scholarly journals Assessment of Soil Organic Carbon Stock of Churia Broad Leaved Forest of Nawalpur District, Nepal

2019 ◽  
Vol 2 (1-2) ◽  
pp. 45-52
Author(s):  
Bharat Mohan Adhikari ◽  
Pramod Ghimire

The present article is based on the study carried out to quantify aspect wise variation in Soil Organic Carbon (SOC) stock of Churia broad leaved forest in Bhedawari Community Forest of Nawalpur district, Nepal. The total amount of SOC stock in upto 30 cm soil depth in Bhedawari Community Forest was found to be 33.91 t/ha. Aspect had made significant difference upon SOC stock with p value of 0.002 (p<0.05). The total SOC was higher in the northern aspect (36.83 ± 1.34 t/ha) than in the southern aspect (30.98 ± 1.22 t/ha). Hence, soil carbon sequestration through community managed forest is a good strategy to mitigate the increasing concentration of atmospheric CO2.

2014 ◽  
Vol 14 (2) ◽  
pp. 103-108 ◽  
Author(s):  
S Bhandari ◽  
S Bam

The study was carried out in Chovar village of Kritipur Municipality, Kathmandu to compare the soil organic carbon (SOC) of three main land use types namely forest, agricultural and barren land and to show how land use and management are among the most important determinants of SOC stock. Stratified random sampling method was used for collecting soil samples. Walkley and Black method was applied for measuring SOC. Land use and soil depth both affected SOC stock significantly. Forest soil had higher SOC stock (98 t ha-1) as compared to agricultural land with 36.6 t ha-1 and barren land with 83.6 t ha-1. Similarly, the SOC in terms of CO22-1, 79.27 to 22.02 CO2-e ha-1 and 121.11 to 80.74 CO2-1 for 0- 20 cm to 40-60 cm soil depth, respectively. Bulk density (BD) was found less in forest soil compared to other lands at all depths, which showed negative correlation with SOC. The study showed a dire need to increase current soil C stocks which can be achieved through improvements in land use and management practices, particularly through conservation and restoration of degraded forests and soils.   DOI: http://dx.doi.org/10.3126/njst.v14i2.10422   Nepal Journal of Science and Technology Vol. 14, No. 2 (2013) 103-108


Soil Research ◽  
2013 ◽  
Vol 51 (8) ◽  
pp. 657 ◽  
Author(s):  
F. C. Hoyle ◽  
M. D'Antuono ◽  
T. Overheu ◽  
D. V. Murphy

Assessment of the potential for soil carbon sequestration based on soil type, land use, and climate scenarios is crucial for determining which agricultural regions can be used to help mitigate increasing atmospheric CO2 concentrations. In semi-arid and Mediterranean-type environments, soil organic carbon (SOC) storage capacity is rarely achieved under dryland agricultural systems. We aimed to assess both actual (measured) and attainable (modelled) SOC stock values for the dryland agricultural production zone of Western Australia. We measured actual SOC storage (0–0.3 m) and known constraints to plant growth for a range of soils types (3–27% clay) and land uses (continuous cropping, mixed cropping, annual and perennial pastures) on the Albany sand plain in Western Australia (n = 261 sites), spanning a rainfall gradient of 421–747 mm. Average actual SOC stocks for land use–soil type combinations ranged from 33 to 128 t C/ha (0–0.3 m). Up to 89% of the variability in actual SOC stock was explained by soil depth, rainfall, land use, and soil type. The scenarios modelled with Roth-C predicted that attainable SOC values of 59–140 t C/ha (0–0.3 m) could be achieved within 100 years. This indicated an additional storage capacity of 5–45% (7–27 t C/ha) depending on the specific land use–soil type combination. However, actual SOC in the surface 0–0.1 m was 95 to >100% of modelled attainable SOC values, suggesting this soil depth was ‘saturated’. Our findings highlight that additional SOC storage capacity in this region is limited to the subsoil below 0.1 m. This has implications for management strategies to increase SOC sequestration in dryland agricultural systems, as current practices tend to concentrate organic matter near the soil surface.


Scientifica ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jun Shapkota ◽  
Gandhiv Kafle

Understanding distribution of soil organic carbon (SOC) in soil profile is important for assessing soil fertility and SOC stock because it varies with soils of different vegetation and land use types. In this context, the objective of this research is that it was conducted to determine key variance in the SOC stock in three different soil layers, 0–20 cm, 20–40 cm, and 40–60 cm of different vegetation covers of Shivapuri Nagarjun National Park of Kathmandu district, Nepal. Overall field measurement was based on standard national methods. We used the dichromate digestion method to analyse SOC concentrations. The highest SOC concentration (%) was recorded as 4.87% in 0–20 cm of oak forest and lowest 0.42% in 40–60 cm of Chir pine forest. Forest types (oak, upper mixed hardwood, lower mixed hardwood, and Chir pine) had SOC stock 149.62, 104.47, 62.5, and 50.85 t/ha, respectively, up to 60 cm depth. However, these values are significantly different ( p = 0.02 ) at 5% level of significance when comparing means between the forest types. The SOC stock was decreased with increased soil depth, though not significantly different at 5% level of significance. Further study with respect to different climate, soil, forest, and land use type is recommended.


2006 ◽  
Vol 86 (3) ◽  
pp. 465-471 ◽  
Author(s):  
A J VandenBygaart ◽  
D A Angers

In response to Kyoto Protocol commitments, countries can elect agricultural carbon sinks to offset emissions from other sectors, but they need to verify soil organic carbon (SOC) stock change. We summarize issues we see as barriers to obtaining accurate measures of SOC change, including: soil depth, bulk density and equivalent soil mass, representation of landscape components, experimental design, and the equilibrium status of the SOC. If the entire plow depth is not considered, rates of SOC storage under conservation compared with conventional tillage can be overstated. Bulk density must be measured to report SOC stock on an area basis. More critical still is the need to report SOC stock on an equivalent mass basis to normalize the effects of management on bulk density. Most experiments comparing SOC under differing management have been conducted in small, flat research plots. Although results obtained from these long-term experiments have been useful to develop and validate SOC prediction models, they do not adequately consider landscape effects. Traditional agronomic experimental designs can be inefficient for assessing small changes in SOC stock within large spatial variability. Sampling designs are suggested to improve statistical power and sensitivity in detecting changes in SOC stocks over short time periods. Key words: Soil organic carbon change, agroecosystems, experimental design, sampling depth


Author(s):  
Eunice Nimo ◽  
Evans Dawoe ◽  
John Tennyson Afele

on life, it is important that steps are taken to mitigate its effects. With the intensification of cocoa production, there has been a shift in traditional cocoa farming over the years leading to the removal of shade trees, hence, removal of carbon sinks. This study was carried out to compare the amount of carbon stored in cocoa ecosystems to that of a 20 years teak plantation and to calculate the trade-off of carbon between the two systems. Cocoa farms of similar ages (20 years) were selected in which three-subplots were demarcated on each farm at Piase in the Bosomtwe District. Tree Diameter at Breast Height (DBH) was measured and soils samples were collected and analyzed for organic carbon percentage and bulk density. One-way Analysis of Variance was used to analyze above and belowground tree carbon and two-way analysis of variance was used to analyze soil organic carbon stored. Teak plantation recorded higher carbon stock (739.33±2.24 Mg C.ha-1) compared to full sun cocoa (9.36±2.24 Mg C.ha-1). Soil organic carbon across the three farms showed significant (p = 0.0010) variations with depths. The 0-20 cm soil depth stored significantly more (p = 0.0000) organic carbon compared to 20-40 cm soil depth. Total soil carbon stored revealed significant differences amongst the various farms with the full sun (40.857±0.52 Mg C.ha-1) being the least whilst the teak plantation stored the highest (72.42±0.52 Mg C.ha-1). Total carbon (above-ground tree carbon + below-ground tree carbon + soil organic carbon) showed significant difference (p= 0.0000) between land use types with shaded cocoa farm (74.3±0.89 Mg C.ha-1), full sun cocoa farm (32.02±0.89Mg C.ha-1) and that of the teak plantation (950.91±0.89 Mg C.ha-1) respectively. Traditional cocoa ecosystem (shaded cocoa farms) has the potential to store carbon significantly higher than that of the full sun systems.


2016 ◽  
Vol 154 (8) ◽  
pp. 1425-1436 ◽  
Author(s):  
A. Z. LIANG ◽  
X. M. YANG ◽  
X. P. ZHANG ◽  
X. W. CHEN ◽  
N. B. MCLAUGHLIN ◽  
...  

SUMMARYBiased assessment of tillage impacts on soil organic carbon (SOC) sequestration are often associated with a lack of information on the initial level of SOC stocks. The present study reported the changes in SOC concentrations and stocks following 10-year different tillage practices relative to the initial SOC levels. The tillage trial included no tillage (NT), ridge tillage (RT) and mouldboard plough (MP) on a Black soil (Hapludolls) in Northeast China. Results showed that tillage, soil depth and time significantly affected SOC concentration and SOC stock. Tillage and crop residue retention had great impacts on the SOC concentrations in the top 0·1 m layer. Compared with MP and NT, RT resulted in higher SOC concentration and SOC stock in the plough layer (0–0·2 m), which became more obvious with time. The soil under NT and RT had higher stratification ratios (SR) of SOC (SR, the ratio of SOC concentration in 0–0·05 m to that in 0·1–0·2 m) than under MP. Significant positive and nearly identical linear relationships between the SR of SOC and the duration of tillage practices occurred for both NT and RT soils; the increased SR in NT resulted from both SOC increase in surface and SOC decrease in subsurface soils, but in RT, the increased SR was only from a substantial SOC increase in surface soil. Accordingly, the present study highlights that RT was more helpful than NT in carbon sequestration for the studied Black soil in Northeast China.


2020 ◽  
Vol 3 (2) ◽  
pp. 184-192
Author(s):  
Mamata Sharma ◽  
Gandhiv Kafle

Understanding distribution of soil organic carbon and nitrogen in soil profile is important for assessing soil fertility and soil carbon dynamics. However, little is known about their distribution in soil depth below 30cm in Nepal. In this context, this research was carried out in 2019 to determine the Soil Organic Carbon (SOC) and Total Nitrogen (TN) in 0-10 cm, 11-30 cm and 31-60 cm depths of soil profile at forest and grassland in Kotila community forest, Jajarkot, Nepal. Overall field measurement was based on national standard protocols. Three replicates of soil pit from forest and grassland were dug for soil sample collection. Approximately 100 g soil sample from each soil layer was collected and taken to laboratory for SOC analysis. Separate soil samples, one sample from each soil layer were collected with the help of a metal soil corer having volume 245.22cm3 to quantify bulk density. Forest has 25.42 ton/ha SOC stock and 3.28 ton/ha TN stock up to 60 cm soil depth. Likewise, Grassland has 21.19 ton/ha SOC stock and 3.14 ton/ha TN stock up to 60cm soil depth. However, these values are not significantly different at 5 % level of significance. The SOC and TN were decreased with increased soil depths, though not significantly different at 5 % level of significance. The C:N ratio was found higher in forest than grassland. It is concluded that SOC and TN do not vary significantly between forest and grassland. Topsoil contains more SOC, TN, and C:N ratio, so the management practices should focus on maintaining inputs of soil organic matter in the forest and grassland.


2015 ◽  
Vol 35 (18) ◽  
Author(s):  
陈刚 CHEN Gang ◽  
涂利华 TU Lihua ◽  
彭勇 PENG Yong ◽  
胡红玲 HU Hongling ◽  
胡庭兴 HU Tingxing

2010 ◽  
Vol 73 (1) ◽  
pp. 70-76 ◽  
Author(s):  
Yafeng Wang ◽  
Bojie Fu ◽  
Yihe Lü ◽  
Chengjun Song ◽  
Yong Luan

Soil organic carbon (SOC) is one of the key components for assessing soil quality. Meanwhile, the changes in the stocks SOC may have large potential impact on global climate. It is increasingly important to estimate the SOC stock precisely and to investigate its variability. In this study, Yangjuangou watershed was selected to investigate the SOC distribution under different land uses. We found that SOC concentration decreased with increasing soil depth under all land uses and was significantly different across the vertical soil profile (P < 0.01). However, considering effect of land use on SOC, it is only significant (P < 0.01) in the topsoil (0–5 cm) layer. This indicated that land use has a large effect on the stocks of SOC in the surface soil. The stratification ratio of SOC > 1.2 may mean that soil quality is improving. The order of the SOC density (0–30 cm) under different land uses is forestland > orchard land > grassland > immature forestland > terraced cropland. The SOC stock is found to be as large as 2.67 × 10 t (0–30 cm) in this watershed. Considering time effect of restoration, the slope cropland just abandoned is more efficient for SOC accumulation than trees planted in the semi-arid hilly loess area.


Sign in / Sign up

Export Citation Format

Share Document