ENERGY SPECTRUM AND SOME USEFUL EXPECTATION VALUES OF THE TIETZ-HULTHÉN POTENTIAL

2021 ◽  
Vol 5 (2) ◽  
pp. 255-263
Author(s):  
Bako M. Bitrus ◽  
U Wadata ◽  
C. M. Nwabueze ◽  
E. S. Eyube

In this paper, concept of supersymmetric quantum mechanics has been employed to derive expression for bound state energy eigenvalues of the Tietz-Hulthén potential, the corresponding equation for normalized radial eigenfunctions were deduced by ansatz solution technique. In dealing with the centrifugal term of the effective potential of the Schrödinger equation, a Pekeris-like approximation recipe is considered. By means of the expression for bound state energy eigenvalues and radial eigenfunctions, equations for expectation values of inverse separation-squared and kinetic energy of the Tietz-Hulthén potential were obtained from the Hellmann-Feynman theorem. Numerical values of bound state energy eigenvalues and expectation values of inverse separation-squared and kinetic energy the Tietz-Hulthén potential were computed at arbitrary principal and angular momentum quantum numbers. Results obtained for computed energy eigenvalues of Tietz-Hulthén potential corresponding to Z = 0 and V0 = 0 are in excellent agreement with available literature data for Tietz and Hulthén potentials respectively. Studies have also revealed that increase in parameter Z results in monotonic increase in the mean kinetic energy of the system. The results obtained in this work may find suitable applications in areas of physics such as: atomic physics, chemical physics, nuclear physics and solid state physics

2020 ◽  
Vol 4 (2) ◽  
pp. 425-435
Author(s):  
Dlama Yabwa ◽  
Eyube E.S ◽  
Yusuf Ibrahim

In this work we have applied ansatz method to solve for the approximate ℓ-state solution of time independent Schrödinger wave equation with modified Möbius squared potential plus Hulthén potential to obtain closed form expressions for the energy eigenvalues and normalized radial wave-functions. In dealing with the spin-orbit coupling potential of the effective potential energy function, we have employed the Pekeris type approximation scheme, using our expressions for the bound state energy eigenvalues, we have deduced closed form expressions for the bound states energy eigenvalues and normalized radial wave-functions for Hulthén potential, modified Möbius square potential and Deng-Fan potential. Using the value 0.976865485225 for the parameter ω, we have computed bound state energy eigenvalues for various quantum states (in atomic units). We have also computed bound state energy eigenvalues for six diatomic molecules: HCl, LiH, TiH, NiC, TiC and ScF. The results we obtained are in near perfect agreement with numerical results in the literature and a clear demonstration of the superiority of the Pekeris-type approximation scheme over the Greene and Aldrich approximation scheme for the modified Möbius squares potential plus Hulthén potential.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
A. N. Ikot ◽  
H. Hassanabadi ◽  
E. Maghsoodi ◽  
S. Zarrinkamar

Spin and pseudospin symmetries of the Dirac equation for a Hulthén potential with a novel tensor interaction, that is, a combination of the Coulomb and Yukawa potentials, are investigated using the Nikiforov-Uvarov method. The bound-state energy spectra and the radial wave functions are approximately obtained in the case of spin and pseudospin symmetries. The tensor interactions and the degeneracy-removing role are presented in details.


2008 ◽  
Vol 23 (25) ◽  
pp. 2077-2084 ◽  
Author(s):  
SANJIB MEYUR ◽  
S. DEBNATH

The non-Hermitian Hamiltonians of the type [Formula: see text] is solved for the generalized Hulthén potential in terms of Jacobi polynomials by using Nikiforov–Uvarov method. The exact bound-state energy eigenvalues and eigenfunctions are presented.


2010 ◽  
Vol 25 (21) ◽  
pp. 4067-4079 ◽  
Author(s):  
OKTAY AYDOĞDU ◽  
RAMAZAN SEVER

We obtain the bound state energy eigenvalues and the corresponding wave functions of the Dirac particle for the generalized Hulthén potential plus a ring-shaped potential with pseudospin and spin symmetry. The Nikiforov–Uvarov method is used in the calculations. Contribution of the angle-dependent part of the potential to the relativistic energy spectra are investigated. In addition, it is shown that the obtained results coincide with those available in the literature.


Open Physics ◽  
2012 ◽  
Vol 10 (4) ◽  
Author(s):  
Asim Soylu ◽  
Orhan Bayrak ◽  
Ismail Boztosun

AbstractWe investigate the effect of the isotropic velocity-dependent potentials on the bound state energy eigenvalues of the Morse potential for any quantum states. When the velocity-dependent term is used as a constant parameter, ρ(r) = ρ 0, the energy eigenvalues can be obtained analytically by using the Pekeris approximation. When the velocity-dependent term is considered as an harmonic oscillator type, ρ(r) = ρ 0 r 2, we show how to obtain the energy eigenvalues of the Morse potential without any approximation for any n and ℓ quantum states by using numerical calculations. The calculations have been performed for different energy eigenvalues and different numerical values of ρ 0, in order to show the contribution of the velocity-dependent potential on the energy eigenvalues of the Morse potential.


2008 ◽  
Vol 17 (07) ◽  
pp. 1327-1334 ◽  
Author(s):  
RAMAZÀN SEVER ◽  
CEVDET TEZCAN

Exact solutions of Schrödinger equation are obtained for the modified Kratzer and the corrected Morse potentials with the position-dependent effective mass. The bound state energy eigenvalues and the corresponding eigenfunctions are calculated for any angular momentum for target potentials. Various forms of point canonical transformations are applied.


2021 ◽  
pp. 2150041
Author(s):  
U. S. Okorie ◽  
A. N. Ikot ◽  
G. J. Rampho ◽  
P. O. Amadi ◽  
Hewa Y. Abdullah

By employing the concept of conformable fractional Nikiforov–Uvarov (NU) method, we solved the fractional Schrödinger equation with the Morse potential in one dimension. The analytical expressions of the bound state energy eigenvalues and eigenfunctions for the Morse potential were obtained. Numerical results for the energies of Morse potential for the selected diatomic molecules were computed for different fractional parameters chosen arbitrarily. Also, the graphical variation of the bound state energy eigenvalues of the Morse potential for hydrogen dimer with vibrational quantum number and the range of the potential were discussed, with regards to the selected fractional parameters. The vibrational partition function and other thermodynamic properties such as vibrational internal energy, vibrational free energy, vibrational entropy and vibrational specific heat capacity were evaluated in terms of temperature. Our results are new and have not been reported in any literature before.


2017 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Ihtiari Prasetyaningrum ◽  
C Cari ◽  
A Suparmi

<p class="Abstract">The energy eigenvalues and eigenfunctions of Dirac equation for Rosen Morse plus Rosen Morse potential are investigated numerically in terms of finite Romanovsky Polynomial. The bound state energy eigenvalues are given in a closed form and corresponding eigenfunctions are obtained in terms of Romanovski polynomials. The energi eigen value is solved by numerical method with Matlab 2011.</p>


2017 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Ihtiari Prasetyaningrum ◽  
C Cari ◽  
A Suparmi

<p class="Abstract">The energy eigenvalues and eigenfunctions of Dirac equation for Rosen Morse plus Rosen Morse potential are investigated numerically in terms of finite Romanovsky Polynomial. The bound state energy eigenvalues are given in a closed form and corresponding eigenfunctions are obtained in terms of Romanovski polynomials. The energi eigen value is solved by numerical method with Matlab 2011.</p>


Sign in / Sign up

Export Citation Format

Share Document