scholarly journals ASSESSMENT OF POSSIBLE CHANGES IN THE EL NINO AND LA NINA REPEATABILITY BY THE END OF THE XXI CENTURY USING THE CMIP6 MODELS

Author(s):  
E.N. Voskresenskaya ◽  
◽  
O.V. Marchukova ◽  
V.V. Afanasyeva ◽  
◽  
...  

The quality of SST anomalies revealed in the equatorial Pacific associated with El Niño (EN) and La Ni-ña (LN) in the CMIP6 project models (KIOST-ESM, MIROC-ES2L and INM-CM4-8) was evaluated by comparing with real events in the period 1950 to 2014 using the ERSSTv5 data sets. It is shown that the ensemble model estimation of the number, intensity and duration of EN and LN corresponds quite well to real conditions. On this basis, the corresponding model ensemble calculations of their future possible changes in 2021-2085 relative to the historical 1950-2014 period were carried out for two possible sce-narios: business-as-usual (SSP2-4.5) and negative (SSP5-8.5).

2018 ◽  
Vol 52 (9-10) ◽  
pp. 6195-6212 ◽  
Author(s):  
Gen Li ◽  
Yuntao Jian ◽  
Song Yang ◽  
Yan Du ◽  
Ziqian Wang ◽  
...  

2020 ◽  
Vol 65 (1) ◽  
pp. 96-120
Author(s):  
Olesia V. Marchukova ◽  
◽  
Andrey S. Lubkov ◽  
Elena N. Voskresenskaya ◽  
◽  
...  

2021 ◽  
Vol 4 (1) ◽  
pp. 72
Author(s):  
Ida Bagus Mandhara Brasika

The aim of this research is to understand the impact of El Nino Modoki into Indonesian precipitation and how ensemble models can simulate this changing. Ensemble model has been recognized as a method to improve the quality of model and/or prediction of climate phenomenon. Every model has their own algorithm which causes strength and weakness in many aspects. Ensemble will improve the quality of simulation while reducing the weakness. However, the combination of models for ensembles is differ for each event and/or location. Here we utilize the Squared Error Skill Score (SESS) method to examine each model quality and to compare the ensemble model with the single model. El Nino Modoki is a unique phenomenon. It remains debatable amongst scientists, many features of this phenomenon are unfold. So, it is important to find out how El Nino Modoki has changed precipitation over Indonesia. To verify the changing precipitation, the composite of precipitation on El Nino Modoki Year is divided with the composite of all years. Last, validating ensemble model with Satellite-gauge precipitation dataset. El Nino Modoki decreases precipitation in most of Indonesian regions. The ensemble, while statistically promising, has failed to simulate precipitation in some region.


2010 ◽  
Vol 23 (14) ◽  
pp. 3933-3952 ◽  
Author(s):  
H. Annamalai ◽  
Shinichiro Kida ◽  
Jan Hafner

Abstract Diagnostics performed with twentieth-century (1861–2000) ensemble integrations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (CM2.1) suggest that, during the developing phase, El Niño events that co-occur with the Indian Ocean Dipole Zonal Mode (IODZM; class 1) are stronger than those without (class 2). Also, during class 1 events coherent sea surface temperature (SST) anomalies develop in the Indonesian seas that closely follow the life cycle of IODZM. This study investigates the effect of these regional SST anomalies (equatorial Indian Ocean and Indonesian seas) on the amplitude of the developing El Niño. An examination of class 1 minus class 2 composites suggests two conditions that could lead to a strong El Niño in class 1 events: (i) during January, ocean–atmosphere conditions internal to the equatorial Pacific are favorable for the development of a stronger El Niño and (ii) during May–June, coinciding with the development of regional SST anomalies, an abrupt increase in westerly wind anomalies is noticeable over the equatorial western Pacific with a subsequent increase in thermocline and SST anomalies over the eastern equatorial Pacific. This paper posits the hypothesis that, under favorable conditions in the equatorial Pacific, regional SST anomalies may enable the development of a stronger El Niño. Owing to a wealth of feedbacks in CM2.1, solutions from a linear atmosphere model forced with May–June anomalous precipitation and anomalous SST from selected areas over the equatorial Indo-Pacific are examined. Consistent with our earlier study, the net Kelvin wave response to contrasting tropical Indian Ocean heating anomalies cancels over the equatorial western Pacific. In contrast, Indonesian seas SST anomalies account for about 60%–80% of the westerly wind anomalies over the equatorial western Pacific and also induce anomalous precipitation over the equatorial central Pacific. It is argued that the feedback between the precipitation and circulation anomalies results in an abrupt increase in zonal wind anomalies over the equatorial western Pacific. Encouraged by these results, the authors further examined the processes that cause cold SST anomalies over the Indonesian seas using an ocean model. Sensitivity experiments suggest that local wind anomalies, through stronger surface heat loss and evaporation, and subsurface upwelling are the primary causes. The present results imply that in coupled models, a proper representation of regional air–sea interactions over the equatorial Indo-Pacific warm pool may be important to understand and predict the amplitude of El Niño.


2010 ◽  
Vol 23 (21) ◽  
pp. 5826-5843 ◽  
Author(s):  
Yuko M. Okumura ◽  
Clara Deser

Abstract El Niño and La Niña are not a simple mirror image, but exhibit significant differences in their spatial structure and seasonal evolution. In particular, sea surface temperature (SST) anomalies over the equatorial Pacific cold tongue are larger in magnitude during El Niño compared to La Niña, resulting in positive skewness of interannual SST variations. The associated atmospheric deep convection anomalies are displaced eastward during El Niño compared to La Niña because of the nonlinear atmospheric response to SST. In addition to these well-known features, an analysis of observational data for the past century shows that there is a robust asymmetry in the duration of El Niño and La Niña. Most El Niños and La Niñas develop in late boreal spring/summer, when the climatological cold tongue is intensifying, and they peak near the end of the calendar year. After the mature phase, El Niños tend to decay rapidly by next summer, but many La Niñas persist through the following year and often reintensify in the subsequent winter. Throughout the analysis period, this asymmetric feature is evident for strong events in which Niño-3.4 SST anomalies exceed one standard deviation in December. Seasonally stratified composite analysis suggests that the eastward displacement of atmospheric deep convection anomalies during El Niño enables surface winds in the western equatorial Pacific to be more affected by remote forcing from the Indian Ocean, which acts to terminate the Pacific events.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Christine T. Y. Chung ◽  
Scott B. Power ◽  
Arnold Sullivan ◽  
François Delage

AbstractTropical Pacific variability (TPV) heavily influences global climate, but much is still unknown about its drivers. We examine the impact of South Pacific variability on the modes of TPV: the El Niño-Southern Oscillation (ENSO) and the Interdecadal Pacific Oscillation (IPO). We conduct idealised coupled experiments in which we suppress temperature and salinity variability at all oceanic levels in the South Pacific. This reduces decadal variability in the equatorial Pacific by ~30% and distorts the spatial pattern of the IPO. There is little change to overall interannual variability, however there is a decrease in the magnitude of the largest 5% of both El Niño and La Niña sea-surface temperature (SST) anomalies. Possible reasons for this include: (i) reduced decadal variability means that interannual SST variability is superposed onto a ‘flatter’ background signal, (ii) suppressing South Pacific variability leads to the alteration of coupled processes linking the South and equatorial Pacific. A small but significant mean state change arising from the imposed suppression may also contribute to the weakened extreme ENSO SST anomalies. The magnitude of both extreme El Niño and La Niña SST anomalies are reduced, and the associated spatial patterns of change of upper ocean heat content and wind stress anomalies are markedly different for both types of events.


2021 ◽  
Author(s):  
Hui Xu ◽  
Lei Chen ◽  
Wansuo Duan

AbstractThe optimally growing initial errors (OGEs) of El Niño events are found in the Community Earth System Model (CESM) by the conditional nonlinear optimal perturbation (CNOP) method. Based on the characteristics of low-dimensional attractors for ENSO (El Niño Southern Oscillation) systems, we apply singular vector decomposition (SVD) to reduce the dimensions of optimization problems and calculate the CNOP in a truncated phase space by the differential evolution (DE) algorithm. In the CESM, we obtain three types of OGEs of El Niño events with different intensities and diversities and call them type-1, type-2 and type-3 initial errors. Among them, the type-1 initial error is characterized by negative SSTA errors in the equatorial Pacific accompanied by a negative west–east slope of subsurface temperature from the subsurface to the surface in the equatorial central-eastern Pacific. The type-2 initial error is similar to the type-1 initial error but with the opposite sign. The type-3 initial error behaves as a basin-wide dipolar pattern of tropical sea temperature errors from the sea surface to the subsurface, with positive errors in the upper layers of the equatorial eastern Pacific and negative errors in the lower layers of the equatorial western Pacific. For the type-1 (type-2) initial error, the negative (positive) temperature errors in the eastern equatorial Pacific develop locally into a mature La Niña (El Niño)-like mode. For the type-3 initial error, the negative errors in the lower layers of the western equatorial Pacific propagate eastward with Kelvin waves and are intensified in the eastern equatorial Pacific. Although the type-1 and type-3 initial errors have different spatial patterns and dynamic growing mechanisms, both cause El Niño events to be underpredicted as neutral states or La Niña events. However, the type-2 initial error makes a moderate El Niño event to be predicted as an extremely strong event.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 140
Author(s):  
Wenping Jiang ◽  
Gen Li ◽  
Gongjie Wang

El Niño events vary from case to case with different decaying paces. In this study, we demonstrate that the different El Niño decaying paces have distinct impacts on the East Asian monsoon circulation pattern during post-El Niño summers. For fast decaying (FD) El Niño summers, a large-scale anomalous anticyclone dominates over East Asia and the North Pacific from subtropical to mid-latitude; whereas, the East Asian monsoon circulation display a dipole pattern with anomalous northern cyclone and southern anticyclone for slow decaying (SD) El Niño summers. The difference in anomalous East Asian monsoon circulation patterns was closely associated with the sea surface temperature (SST) anomaly patterns in the tropics. In FD El Niño summers, the cold SST anomalies in the tropical central-eastern Pacific and warm SST anomalies in the Maritime Continent induce the anticyclone anomalies over the Northwest Pacific. In contrast, the warm Kelvin wave anchored over the tropical Indian Ocean during SD El Niño summers plays a crucial role in sustaining the anticyclone anomalies over the Northwest Pacific. In particular, the opposite atmospheric circulation anomaly patterns over Northeast Asia and the mid-latitude North Pacific are mainly modulated by the stationary Rossby wave trains triggered by the opposite SST anomalies in the tropical eastern Pacific during FD and SD El Niño summers. Finally, the effect of distinct summer monsoon circulation patterns associated with the El Niño decay pace on the summer climate over East Asia are also discussed.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 851
Author(s):  
Gen Li ◽  
Zhiyuan Zhang ◽  
Bo Lu

Under increased greenhouse gas (GHG) forcing, climate models tend to project a warmer sea surface temperature in the eastern equatorial Pacific than in the western equatorial Pacific. This El Niño-like warming pattern may induce an increase in the projected occurrence frequency of extreme El Niño events. The current models, however, commonly suffer from an excessive westward extension of the equatorial Pacific cold tongue accompanied by insufficient equatorial western Pacific precipitation. By comparing the Representative Concentration Pathway (RCP) 8.5 experiments with the historical simulations based on the Coupled Model Intercomparison Project phase 5 (CMIP5), a “present–future” relationship among climate models was identified: models with insufficient equatorial western Pacific precipitation error would have a weaker mean El Niño-like warming pattern as well as a lower increase in the frequency of extreme El Niño events under increased GHG forcing. Using this “present–future” relationship and the observed precipitation in the equatorial western Pacific, this study calibrated the climate projections in the tropical Pacific. The corrected projections showed a stronger El Niño-like pattern of mean changes in the future, consistent with our previous study. In particular, the projected increased occurrence of extreme El Niño events under RCP 8.5 forcing are underestimated by 30–35% in the CMIP5 multi-model ensemble before the corrections. This implies an increased risk of the El Niño-related weather and climate disasters in the future.


2020 ◽  
Vol 33 (5) ◽  
pp. 1619-1641 ◽  
Author(s):  
Jie Feng ◽  
Tao Lian ◽  
Jun Ying ◽  
Junde Li ◽  
Gen Li

AbstractWhether the state-of-the-art CMIP5 models have different El Niño types and how the degree of modeled El Niño diversity would be impacted by the future global warming are still heavily debated. In this study, cluster analysis is used to investigate El Niño diversity in 30 CMIP5 models. As the method does not rely on any prior knowledge of the patterns of El Niño seen in observations, it provides a practical way to identify the degree of El Niño diversity in models. Under the historical scenario, most models show a poor degree of El Niño diversity in their own model world, primarily due to the lopsided numbers of events belonging to the two modeled El Niño types and the weak compactness of events in each cluster. Four models are found showing significant El Niño diversity, yet none of them captures the longitudinal distributions of the warming centers of the two El Niño types seen in the observations. Heat budget analysis of the sea surface temperature (SST) anomaly suggests that the degree of modeled El Niño diversity is highly related to the climatological zonal SST gradient over the western-central equatorial Pacific in models. As the gradient is weakened in most models under the future high-emission scenario, the degree of modeled El Niño diversity is further reduced in the future. The results indicate that a better simulation of the SST gradient over the western-central equatorial Pacific might allow a more reliable simulation/projection of El Niño diversity in most CMIP5 models.


Sign in / Sign up

Export Citation Format

Share Document