scholarly journals Impulse Breakdown Characteristics of Main Gap in the Presence of a Local Discharge

2019 ◽  
Vol 6 (2) ◽  
pp. 413-423
Author(s):  
Abderrahmane Settaouti

The characteristics of impulse breakdown voltages and the influence of the position of third electrode in air gap are investigated experimentally to study the parameters influencing the breakdown voltage in the presence of metallic objects around the high voltage power apparatus with air insulation. Experimental results show that the factors affecting the breakdown voltage are the shape and the size of the grounded electrode, the third metallic electrode location and the gap length. A comparison between negative and positive polarities of the applied voltages indicates an important influence of the polarity in the dielectric breakdown mechanism. The possible mechanism by which the local electric discharge initiates the main dielectric breakdown seems to be the high electric field around the local discharge channel and the streamers protruding from its surface.

2015 ◽  
Vol 0 (0) ◽  
Author(s):  
O.N. Sizonenko ◽  
A.I. Raichenko ◽  
A.S. Torpakov ◽  
A.V. Derevianko

AbstractPossible mechanisms of metal micropowders grinding during high-voltage electric discharge processing in hydrocarbon liquid are considered in the present paper. Conditions for melting of Fe and Ti powder particles in plasma discharge channel and in microplasma channels between particles are found out. Regularities of nanopores movement and electromagnetic particle compression are evaluated. It is shown that the current density in the discharge channel is an important parameter, allowing the assessment of the efficiency of the electrodischarge dispersion of metal particles.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Jingjing Jin ◽  
Shengdong Hu ◽  
Yinhui Chen ◽  
Kaizhou Tan ◽  
Jun Luo ◽  
...  

In order to achieve a high breakdown voltage (BV) for the SOI (Silicon-On-Insulator) power device in high voltage ICs, a novel high voltage n-channel lateral double-diffused MOS (LDMOS) with a lateral variable interface doping profile (LVID) placed at the interface between the SOI layer and the buried-oxide (BOX) layer (LVID SOI) is researched. Its breakdown mechanism is investigated theoretically, and its structure parameters are optimized and analyzed by 2D simulation software MEDICI. In the high voltage blocking state, the high concentration ionized donors in the depleted LVID make the surface electric field of SOI layer (ES) more uniform and enhance the electric field of BOX layer (EI), which can prevent the lateral premature breakdown and result in a higher BV. Compared with the conventional uniformly doped (UD) SOI LDMOS,EIof the optimized LVID SOI LDMOS is enhanced by 79% from 119 V/μm to 213 V/μm, and BV is increased by 33.4% from 169 V to 227 V. Simulations indicate that the method of LVID profile can significantly improve breakdown voltage for the SOI LDMOS.


2018 ◽  
Vol 16 (3) ◽  
pp. 128
Author(s):  
I Made Yulistya Negara ◽  
Daniar Fahmi ◽  
Dimas Anton Asfani ◽  
Dwi Krisna Cahyaningrum

Pre-breakdown voltage is a phenomenon of dielectric breakdown affecting insulation’s performance. The faster pre-breakdown voltage of insulation, the more significant its dielectric degradation. In this paper, pre-breakdown voltage in oil insulation was investigated by using DC high voltage in laboratory scale. Under testing, the streamer development was recorded by using a high-resolution camera. The measured current was synchronized with an image that was picked up during the oil insulation testing. By this experiment, the characteristics of the current in phenomenon pre-breakdown voltage at oil insulation was studied. The results showed that the measured current of pre-breakdown phenomenon in oil insulation under 28 kV to 30 kV excitation voltage is in a range 100 mA - 150 mA.


2021 ◽  
Vol 13 (8) ◽  
pp. 4481
Author(s):  
Marija Banožić ◽  
Antun Jozinović ◽  
Jovana Grgić ◽  
Borislav Miličević ◽  
Stela Jokić

Three fractions of tobacco waste (scrap, dust and midrib) were subjected to a high voltage electric discharge (HVED) assisted extraction procedure under different experimental conditions: solvent:solid ratio (300, 500, 700 mL/g), frequency (40, 70, 100 Hz) and treatment time (15, 30, 45 min), in order to study the influence of these conditions on the content of chlorogenic acid. The content of chlorogenic acid ranged from 1.54 to 3.66 mg/100 g for scrap, from 1.90 to 2.97 mg/100 g for dust, and from 2.30 to 3.38 mg/100 g for midrib extract, showing a strong dependence on the applied process parameters. The temperature change and the change in pH and electrical conductivity of the extracts after high voltage discharge treatment were also observed. The studied process parameters showed a statistically significant effect on the chemical and physical properties of the extracts from tobacco waste as well as on the content of chlorogenic acid, indicating the potential of HVED assisted processes in the separation of chlorogenic acid from tobacco industry waste. Multiple regression analysis was used to fit the results for the chlorogenic acid to a second order polynomial equation and the optimum conditions were determined.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jun Xu ◽  
Xiang Cui ◽  
Huiyuan Zhang

AbstractThe electric eel is a unique species that has evolved three electric organs. Since the 1950s, electric eels have generally been assumed to use these three organs to generate two forms of electric organ discharge (EOD): high-voltage EOD for predation and defense and low-voltage EOD for electrolocation and communication. However, why electric eels evolved three electric organs to generate two forms of EOD and how these three organs work together to generate these two forms of EOD have not been clear until now. Here, we present the third form of independent EOD of electric eels: middle-voltage EOD. We suggest that every form of EOD is generated by one electric organ independently and reveal the typical discharge order of the three electric organs. We also discuss hybrid EODs, which are combinations of these three independent EODs. This new finding indicates that the electric eel discharge behavior and physiology and the evolutionary purpose of the three electric organs are more complex than previously assumed. The purpose of the middle-voltage EOD still requires clarification.


Author(s):  
Luigi Balestra ◽  
Susanna Reggiani ◽  
Antonio Gnudi ◽  
Elena Gnani ◽  
Jagoda Dobrzynska ◽  
...  

2018 ◽  
Vol 201 ◽  
pp. 02004
Author(s):  
Shao-Ming Yang ◽  
Gene Sheu ◽  
Tzu Chieh Lee ◽  
Ting Yao Chien ◽  
Chieh Chih Wu ◽  
...  

High performance power device is necessary for BCD power device. In this paper, we used 3D Synopsis TCAD simulation tool Sentaurus to develop 120V device and successfully simulated. We implemented in a conventional 0.35um BCDMOS process to present of a novel high side 120V LDMOS have reduced surface field (RESURF) and Liner p-top structure with side isolation technology. The device has been research to achieve a benchmark specific on-resistance of 189 mΩ-mm2 while maintaining horizontal breakdown voltage and vertical isolation voltage both to target breakdown voltage of 120V. In ESOA, we also proposed a better performance of both device without kirk effect.


Sign in / Sign up

Export Citation Format

Share Document