ABOUT PARAMETRIZATION OF SELECTION OF SIGNIFICANT CLUSTERS
One of the fundamental tasks of cluster analysis is the partitioning of multidimensional data samples into groups of clusters – objects, which are closed in the sense of some given measure of similarity. In a some of problems, the number of clusters is set a priori, but more often it is required to determine them in the course of solving clustering. With a large number of clusters, especially if the data is “noisy,” the task becomes difficult for analyzing by experts, so it is artificially reduces the number of consideration clusters. The formal means of merging the “neighboring” clusters are considered, creating the basis for parameterizing the number of significant clusters in the “natural” clustering model [1].