scholarly journals High performance ambipolar organic mixed ionic-electronic conductor for adaptive logic circuits and neuromorphic electronics

Author(s):  
Yanxi Zhang ◽  
Eveline van Doremaele ◽  
Gang Ye ◽  
Tim Stevens ◽  
Jun Song ◽  
...  

Organic mixed ionic-electronic conductors (OMIECs) are central to bioelectronic applications such as biosensors, health monitoring devices and neural interfaces, and have facilitated efficient next-generation brain-inspired computing and biohybrid systems. Most OMIECs are hole-conducting (p-type) materials, while complimentary logic circuits and various biosensors require electron-conducting (n-type) materials too. Here we show an ambipolar mixed ionic-electronic polymer that achieves high on/off ratios with high ambient p- and n- type stability. We highlight the versatility of the material by demonstrating its use as a neuromorphic memory element, an adaptable ambipolar complementary logic inverter, and a neurotransmitter sensor. The ambipolar operation of this material allows for straightforward monolithic fabrication and integration, and opens a route towards more sophisticated complex logic and adaptive circuits.

Author(s):  
James E. Miller ◽  
Andrea Ambrosini ◽  
Sean M. Babiniec ◽  
Eric N. Coker ◽  
Clifford K. Ho ◽  
...  

Thermochemical energy storage (TCES) offers the potential for greatly increased storage density relative to sensible-only energy storage. Moreover, heat may be stored indefinitely in the form of chemical bonds via TCES, accessed upon demand, and converted to heat at temperatures significantly higher than current solar thermal electricity production technology and is therefore well-suited to more efficient high-temperature power cycles. The PROMOTES effort seeks to advance both materials and systems for TCES through the development and demonstration of an innovative storage approach for solarized Air-Brayton power cycles and that is based on newly-developed redox-active metal oxides that are mixed ionic-electronic conductors (MIEC). In this paper we summarize the system concept and review our work to date towards developing materials and individual components.


1998 ◽  
Vol 548 ◽  
Author(s):  
I. Riess ◽  
D. Cahen

ABSTRACTPolymer electrochemical cells have been reported to emit light. The current and light output increase rapidly with voltage, apparently beyond 2V. The polymer is an ionic conductor as well as an electronic (electron/hole) conductor, i.e. a mixed ionic-electronic conductor (MIEC).The I-V relations are explained here to be those of an MIEC of a particular defect model placed between two ion blocking electrodes. This MIEC defect model assumes a large concentration of mobile ions and small concentrations of electrons and holes. A p and an n region are formed in the MIEC. However, there is no space charge within the MIEC and it stays neutral. The resulting I-V relations are exponential. A good fit to the experimental data is obtained when electrode over-potential and heating of the polymer under current are taken into consideration.


2014 ◽  
Vol 16 (41) ◽  
pp. 22513-22516 ◽  
Author(s):  
Ilan Riess

The interpretation of Onsager cross transport coefficients measured in mixed ionic electronic conductor (MIEC) oxides is examined.


1998 ◽  
Vol 34 (19) ◽  
pp. 1888 ◽  
Author(s):  
G. Höck ◽  
T. Hackbarth ◽  
U. Erben ◽  
E. Kohn ◽  
U. König
Keyword(s):  

2019 ◽  
Vol 288 ◽  
pp. 104-112 ◽  
Author(s):  
Yanghai Gui ◽  
Lele Yang ◽  
Kuan Tian ◽  
Hongzhong Zhang ◽  
Shaoming Fang

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Muhammad Naqi ◽  
Kyung Hwan Choi ◽  
Hocheon Yoo ◽  
Sudong Chae ◽  
Bum Jun Kim ◽  
...  

AbstractLow-temperature-processed semiconductors are an emerging need for next-generation scalable electronics, and these semiconductors need to feature large-area fabrication, solution processability, high electrical performance, and wide spectral optical absorption properties. Although various strategies of low-temperature-processed n-type semiconductors have been achieved, the development of high-performance p-type semiconductors at low temperature is still limited. Here, we report a unique low-temperature-processed method to synthesize tellurium nanowire networks (Te-nanonets) over a scalable area for the fabrication of high-performance large-area p-type field-effect transistors (FETs) with uniform and stable electrical and optical properties. Maximum mobility of 4.7 cm2/Vs, an on/off current ratio of 1 × 104, and a maximum transconductance of 2.18 µS are achieved. To further demonstrate the applicability of the proposed semiconductor, the electrical performance of a Te-nanonet-based transistor array of 42 devices is also measured, revealing stable and uniform results. Finally, to broaden the applicability of p-type Te-nanonet-based FETs, optical measurements are demonstrated over a wide spectral range, revealing an exceptionally uniform optical performance.


ChemInform ◽  
2012 ◽  
Vol 43 (28) ◽  
pp. no-no
Author(s):  
Arumugam Manthiram ◽  
Jung-Hyun Kim ◽  
Young Nam Kim ◽  
Ki-Tae Lee

Sign in / Sign up

Export Citation Format

Share Document