scholarly journals Dual-energy X-ray absorptiometry is a reliable non-invasive technique for determining whole body composition of chickens

2019 ◽  
Vol 98 (6) ◽  
pp. 2652-2661
Author(s):  
S. Schallier ◽  
C. Li ◽  
J. Lesuisse ◽  
G.P.J. Janssens ◽  
N. Everaert ◽  
...  
1996 ◽  
Vol 75 (6) ◽  
pp. 803-809 ◽  
Author(s):  
Susan A. Jebb ◽  
Stephen W Garland ◽  
Graham Jennings ◽  
Marinos Elia

Dual-energy X-ray absorptiometry (DXA) is a novel, non-invasive technique for the measurement of gross body composition in small animals. In the present study the absolute accuracy of the Hologic QDR-lOOOW scanner was assessed by comparison with direct analysis in twelve rats with a range of body fat and bone mineral content (BMC) values. Fat masses measured by DXA and petroleumether extraction were significantly different (P<0·0023). The DXA technique consistently overestimated fat mass by approximately one third of the measured fatcontent. BMC derived from the measurement of Ca in asb gave a mean of 8·26 (range 1·57–15·71)g. BMC measured by DXA was not significantly different for the group as a whole. However, there was a trend for DXA to overestimate BMC in animals with low BMC and underestimate in those with higher BMC, compared with direct analysis, such that the 95% limits of agreement for the two techniques were +2·73 to −2·58g. These results suggest that the present small-animal software developed for use with currently available Hologic machines does not give an accurate measure of gross body composition compared with the results from classical direct analysis.


2019 ◽  
Vol 59 (5) ◽  
pp. 993 ◽  
Author(s):  
Camila Angelica Gonçalves ◽  
Nilva Kazue Sakomura ◽  
Edney Pereira da Silva ◽  
Silvana Martinez Baraldi Artoni ◽  
Rafael Massami Suzuki ◽  
...  

The use of non-invasive techniques to estimate body composition in animals in vivo conforms to the desire to improve the welfare of animals during research and also has the potential to advance scientific research. The purpose of the present study was to determine a predictive equation of the dual energy X-ray absorptiometry (DXA) method for broilers by comparing the measurement of body composition using DXA with that by chemical analysis. In total, 720 day-old Cobb500 broilers were distributed into a split-plot arrangement 3 (crude protein concentrations of diets) × 2 (genders) × 2 (methods of chemical body evaluation), with six replications of 20 birds each. To promote the modification of the body composition of broilers, diets varied in the crude protein concentration, which was 70%, 100% and 130% of the required. Two hundred and sixteen birds in different ages were evaluated by its bodyweight, lean, fat and ash contents. The data were submitted to ANOVA and it was demonstrated that the dietary crude protein levels applied allowed a greater variation of the body composition of the birds. Also, the results indicated that the DXA method did not predict fat mass, lean mass or bone mineral content as well as did chemical composition analysis, resulting in the need to develop regression equations for improving the in vivo prediction of these chemical components. The regression equations developed here enable the feather-free body composition of individual broilers to be directly estimated throughout growth using the DXA non-invasive technique.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Natália Tomborelli Bellafronte ◽  
Lorena Vega-Piris ◽  
Paula Garcia Chiarello ◽  
Guillermina Barril Cuadrado

Abstract Background and Aims Chronic kidney disease (CKD) patients frequently have an altered body composition driven by metabolic disorders from the uremic syndrome that usually leads to increased protein catabolism, with obesity and muscle impairment being common conditions associated with worse clinical prognosis and high mortality rates. Therefore, with increased mortality and disability rates of CKD patients in the last quarter of a century and the association of a poor body composition with low survival, routine and longitudinal assessment of body composition could improve clinical outcomes. Due to limited availability of reference methods to assess nutritional status, alternative methods are used. In view of the above, our goal was to evaluate the agreement between multifrequency bioelectrical impedance spectroscopy (BIS) and Dual-energy X-ray Absorptiometry (DXA) for assessment of body composition in CKD. Method Cross-sectional and prospective analyses by DXA (Hologic, GE®) and BIS (BCM, Fresenius Medical Care®) in whole-body (BISWB) and segmental (BISSEG) protocols were performed in CKD non-dialysis-dependent, hemodialysis and peritoneal dialysis (for at least 3 months), and renal transplantation (for at least 6 months) adult (18 ≤ age ≤ 60 years old) patients. Measurements were performed consecutively by the same professional after an 8-hour fast, drainage of the peritoneal dialysate and just after the midweek hemodialysis session. Intraclass correlation coefficient (ICC) and Bland-Altman plots were evaluated for agreement analysis in group and individual levels, respectively; linear regression analysis was performed for bias assessment and development of new equations; ROC curve was constructed for diagnosis of inadequate error tolerance (DXA - BIS &gt; ± 2kg). Results A total of 266 patients were included: 137 men (M) and 129 women (W); 81 were in non-dialysis-dependent treatment, 83 in hemodialysis, 24 in peritoneal dialysis, and 80 had renal transplantation. Total sample had a mean age of 47 ± 10 years old. CKD was secondary to systemic arterial hypertension in 29% of the total sample, to glomerulonephritis in 25%, to diabetes mellitus in 10%, to polycystic kidney in 7%, to glomerulosclerosis and systemic syndromes in 8%, and to other causes and unknown etiology in 20%. Fourteen patients (4 M and 10 W) were in automated and 9 (4 M and 5 W) in continuous ambulatory PD. KTx was by living donor in 18 (14 M and 4 W) and by deceased donor in 63 (34 M and 29 W) patients. The agreement with DXA was greater for BISWB than BISSEG; for fat mass (FM) (ICC in M = 0.89; ICC in W = 0.93) than for fat free mass (FFM) (ICC in M = 0.57; ICC in W = 0.52). Bland-Altman plots showed high limits of agreement (FFM: from -9.51 to 15.64kg; FM: from -7.71 to 7.32kg) with greater bias for FFM as muscular mass increases and for FM in extremes of body fat. The agreement was lower when using the prospective data (body change analysis) (ICC for FFM in M = 0.20; ICC for FFM in W = 0.49; ICC for FM in M = 0.46; ICC for FM in W = 0.58). The factors that interfered in bias between methods were extra to intracellular water ratio (ECW/ICW), body mass index, fat mass index, waist circumference, resistance and reactance (adjusted r2 for FFM = 0.90; r2 for FM = 0.87). FFM had poorer agreement in the last tertile of ECW/ICW sample (ICC in M = 0.69, 0.68 and 0.51; ICC in W = 0.71, 0.74 and 0.38 for first, second and third tertiles, respectively). An ECW/ICW cut-off point of &gt; 0.725 for inadequate error tolerance was determined. New prediction equations for FFM (r2 = 0.91) and FM (r2 = 0.89) presented adequate error tolerance in 55% and 63% in the validation sample compared to 30% and 39% of the original equation, respectively. Conclusion For body composition evaluation in CKD, BIS applied using the whole-body protocol, in normal hydration CKD patients is as reliable as DXA; BIS must be used with caution among overhydrated patients with ECW/ICW &gt; 0.725. The newly developed equations are indicated for greater precision.


1996 ◽  
Vol 28 (Supplement) ◽  
pp. 81
Author(s):  
A D Martin ◽  
S B Heymsfield ◽  
W M Kohrt ◽  
T G Lohman

Radiology ◽  
1992 ◽  
Vol 185 (2) ◽  
pp. 593-598 ◽  
Author(s):  
D O Slosman ◽  
J P Casez ◽  
C Pichard ◽  
T Rochat ◽  
F Fery ◽  
...  

2005 ◽  
Vol 8 (3) ◽  
pp. 298-304 ◽  
Author(s):  
Lauren Margulies ◽  
Mary Horlick ◽  
John C. Thornton ◽  
Jack Wang ◽  
Elli Ioannidou ◽  
...  

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3880 ◽  
Author(s):  
Flinn Shiel ◽  
Carl Persson ◽  
Vini Simas ◽  
James Furness ◽  
Mike Climstein ◽  
...  

Background Dual energy X-ray absorptiometry (DXA) is a commonly used instrument for analysing segmental body composition (BC). The information from the scan guides the clinician in the treatment of conditions such as obesity and can be used to monitor recovery of lean mass following injury. Two commonly used DXA positioning protocols have been identified—the Nana positioning protocol and the National Health and Nutrition Examination Survey (NHANES). Both protocols have been shown to be reliable. However, only one study has assessed the level of agreement between the protocols and ascertained the participants’ preference of protocol based upon comfort. Given the paucity of research in the field and the growing use of DXA in both healthy and pathological populations further research determining the most appropriate positioning protocol is warranted. Therefore, the aims of this study were to assess the level of agreement between results from the NHANES protocol and Nana protocol, and the participants’ preference of protocol based on comfort. Methods Thirty healthy participants (15 males, 15 females, aged 23–59 years) volunteered to participate in this study. These participants underwent two whole body DXA scans in a single morning (Nana positioning protocol and NHANES positioning protocol), in a randomised order. Each participant attended for scanning wearing minimal clothing and having fasted overnight, refrained from exercise in the past 24 h and voided their bladders. Level of agreement, comparing NAHNES to Nana protocol was assessed using an intra-class correlation coefficient (ICC), concordance correlation coefficient (CCC) and percentage change in mean. Limit of agreement comparing the two protocols were assessed using plots, mean difference and confidence limits. Participants were asked to indicate the protocol they found most comfortable. Results When assessing level of agreement between protocols both the ICC and CCC scores were very high and ranged from 0.987 to 0.997 for whole body composition, indicating excellent agreement between the Nana and NHANES protocols. Regional analysis (arms, legs, trunk) ICC scores, ranged between 0.966 and 0.996, CCC ranged between 0.964 and 0.997, change in mean percentage ranged between −0.58% and 0.37% which indicated a very high level of agreement. Limit of agreement analysis using mean difference ranged between −0.223 and 0.686 kg and 95% CL produced results ranging between −1.262 kg and 1.630 kg. The majority (80%) of participants found the NHANES positioning protocol more comfortable. Discussion This study reveals a strong level of agreement as illustrated by high ICC’s and CCC’s between the positioning protocols, however systematic bias within limit of agreement plot and a large difference in 95% confidence limits indicates that the protocols should not be interchanged when assessing an individual. The NHANES protocol affords greater participant comfort.


2019 ◽  
Vol 67 (2) ◽  
pp. 73
Author(s):  
P. A. LeeHong ◽  
X. Li ◽  
W. L. Bryden ◽  
L. C. Ward

Dual-energy X-ray absorptiometry (DXA) is a non-invasive technology for measurement of body composition that requires validation against reference methods when applied to a new species. The aim of this work was to validate DXA for the assessment of body composition of the echidna. Body composition was determined in the short-beaked echidna (Tachyglossus aculeatus aculeatus) using a Norland XR36 DXA scanner and validated by proximate chemical analysis for dry matter, ash, crude fat (FM) and protein (as 6.25 × N) and bone mineral content (BMC). Echidnas were opportunistically obtained as ‘road kill’. Body composition data were compared between techniques by correlation and limits of agreement (LOA) analyses. Twenty-eight echidnas (11 males, 13 females, 4 not determined), weighing 520–5517 g, underwent analyses. Mean FM was 489.9 ± 439.5 g and 448.5 ± 337.5 g, lean mass was 2276.0 ± 1021.4 g and 2256.0 ± 1026.0 g, fat-free mass was 2356.3 ± 1055.1 g and 2389.5 ± 1081.1 g and BMC was 80.3 ± 39.5 g and 79.9 ± 42.4 g by DXA and chemical analysis, respectively. The two methods were highly correlated (0.84 to 0.99) and not significantly different, although LOA were large. DXA has the potential to be used to assess body composition of echidnas although further work is required to improve accuracy of measurement.


2012 ◽  
Vol 22 (5) ◽  
pp. 313-322 ◽  
Author(s):  
Alisa Nana ◽  
Gary J. Slater ◽  
Will G. Hopkins ◽  
Louise M. Burke

Dual-energy X-ray absorptiometry (DXA) is becoming a popular tool to measure body composition, owing to its ease of operation and comprehensive analysis. However, some people, especially athletes, are taller and/or broader than the active scanning area of the DXA bed and must be scanned in sections. The aim of this study was to investigate the reliability of DXA measures of whole-body composition summed from 2 or 3 partial scans. Physically active young adults (15 women, 15 men) underwent 1 whole-body and 4 partial DXA scans in a single testing session under standardized conditions. The partial scanning areas were head, whole body from the bottom of the chin down, and right and left sides of the body. Body-composition estimates from whole body were compared with estimates from summed partial scans to simulate different techniques to accommodate tall and/or broad subjects relative to the whole-body scan. Magnitudes of differences in the estimates were assessed by standardization. In simulating tall subjects, summation of partial scans that included the head scan overestimated whole-body composition by ~3 kg of lean mass and ~1 kg of fat mass, with substantial technical error of measurement. In simulating broad subjects, summation of right and left body scans produced no substantial differences in body composition than those of the whole-body scan. Summing partial DXA scans provides accurate body-composition estimates for broad subjects, but other strategies are needed to accommodate tall subjects.


Sign in / Sign up

Export Citation Format

Share Document