scholarly journals Polysaccharide-Based Nanomaterials for Ocular Drug Delivery: A Perspective

Author(s):  
Haozhe Yu ◽  
Wenyu Wu ◽  
Xiang Lin ◽  
Yun Feng

Ocular drug delivery is one of the most challenging issues in ophthalmology because of the complex physiological structure of the eye. Polysaccharide-based nanomaterials have been extensively investigated in recent years as ideal carriers for enhancing the bioavailability of drugs in the ocular system because of their biocompatibility and drug solubilization. From this perspective, we discuss the structural instability of polysaccharides and its impact on the synthesis process; examine the potential for developing bioactive polysaccharide-based ocular drug nanocarriers; propose four strategies for designing novel drug delivery nanomaterials; and suggest reviewing the behavior of nanomaterials in ocular tissues.

Author(s):  
Supriya Nikam ◽  
Abhilasha Ghule ◽  
Akash Inde ◽  
Anjali Jambhulkar

The Ocular drug delivery system (ODDS) is the prominently challenging system faced by pharmaceutical researchers. Ophthalmic preparations are available in buffered, sterile and isotonic solutions. For the ocular delivery of drugs, various types of dosage forms are prepared and dispensed. As the drops are easier for the administration likewise more prescribed dosage form is the eye drop solution. For obtaining prolonged therapeutic effect ointment, suspensions and gelled systems are also used. The presence of various barriers as anatomical, physiological and physiochemical barriers makes difficulties in delivery of drugs in at the intended sites. Scientists invented alternate delivery routes to direct access at intended target sites. Second invention involves development of novel drug delivery systems providing better permeability, treatability and controlled release at target site. The liposomal delivery is beneficial because they have the ability of envelopment and both hydrophobic and hydrophilic drugs are suitable for delivery to both the anterior and posterior segment of the eye. Therefore, the uses of this alternative approach become quite a necessary. This formulation of novel devices will definitely help to the overcome ocular barriers and side effects with conventional topical drops. Current reviews on the conventional formulations of ocular delivery and their advancements followed by current nanotechnology based on the formulation developments. The recent incident with other ocular drug delivery planning consists of in situ gels, implants, contact lens and nano wafers are discussed. Drug delivery at ophthalmic route has been proven significant advancement for the future perspectives.


2015 ◽  
Vol 04 (03) ◽  
pp. 70-84 ◽  
Author(s):  
Dongzhi Hou ◽  
Ruyi Gui ◽  
Sheng Hu ◽  
Yi Huang ◽  
Zuyong Feng ◽  
...  

Author(s):  
MANORMA ◽  
RUPA MAZUMDER ◽  
ANJNA RANI ◽  
RAJAT BUDHORI ◽  
AYUSHI KAUSHIK

Diabetes mellitus (DM) is a metabolic disorder, whose prevalence is predicted to rise shortly. The present review focuses on the various ocular complications associated with DM, and the various ophthalmic formulation approaches developed to treat the same. Diabetic macular edema (DME), diabetic retinopathy, cataracts, and glaucoma are some of the major vision-threatening complications linked to DM. The ocular route of drug delivery has undergone several advancements in recent decades, the introduction of various novel drug delivery systems (DDS), various modifications in the existing formulation approaches, development of custom-designed personalized medications, being some of the major developments introduced in the field of ocular drug delivery. Due to the application of state-of-the-art technologies in the field of innovations related to ocular DDS, patients have been immensely benefited by the current modes of ocular treatment imparting fewer side effects, enhanced penetration, sustained drug effect, and so on. The present review includes and emphasizes the gradual development that has occurred from the conventional ophthalmic dosage forms to the currently reported novel ocular drug delivery approaches along with the related clinical research works.


2021 ◽  
Vol 22 (18) ◽  
pp. 9934
Author(s):  
Lijie Wang ◽  
Hao Pan ◽  
Donghao Gu ◽  
Haowei Sun ◽  
Kai Chen ◽  
...  

We developed a potential composite ocular drug delivery system for the topical administration of diclofenac sodium (DS). The novel carbon dot CDC-HP was synthesized by the pyrolysis of hyaluronic acid and carboxymethyl chitosan through a one-step hydrothermal method and then embedded in a thermosensitive in situ gel of poloxamer 407 and poloxamer 188 through swelling loading. The physicochemical characteristics of these carbon dots were investigated. The results of the in vitro release test showed that this composite ocular drug delivery system (DS-CDC-HP-Gel) exhibited sustained release for 12 h. The study of the ex vivo fluorescence distribution in ocular tissues showed that it could be used for bioimaging and tracing in ocular tissues and prolong precorneal retention. Elimination profiles in tears corresponded to the study of ex vivo fluorescence imaging. The area under the curve of DS in the aqueous humor in the DS-CDC-HP-Gel group was 3.45-fold that in the DS eye drops group, indicating a longer precorneal retention time. DS-CDC-HP with a positive charge and combined with a thermosensitive in situ gel might strengthen adherence to the corneal surface and prolong the ocular surface retention time to improve the bioavailability. This composite ocular delivery system possesses potential applications in ocular imaging and drug delivery.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3805 ◽  
Author(s):  
Fidiniaina Rina Juliana ◽  
Samuel Kesse ◽  
Kofi Oti Boakye-Yiadom ◽  
Hanitrarimalala Veroniaina ◽  
Huihui Wang ◽  
...  

Glaucoma is considered a leading cause of blindness with the human eye being one of the body’s most delicate organs. Ocular diseases encompass diverse diseases affecting the anterior and posterior ocular sections, respectively. The human eye’s peculiar and exclusive anatomy and physiology continue to pose a significant obstacle to researchers and pharmacologists in the provision of efficient drug delivery. Though several traditional invasive and noninvasive eye therapies exist, including implants, eye drops, and injections, there are still significant complications that arise which may either be their low bioavailability or the grave ocular adverse effects experienced thereafter. On the other hand, new nanoscience technology and nanotechnology serve as a novel approach in ocular disease treatment. In order to interact specifically with ocular tissues and overcome ocular challenges, numerous active molecules have been modified to react with nanocarriers. In the general population of glaucoma patients, disease growth and advancement cannot be contained by decreasing intraocular pressure (IOP), hence a spiking in future research for novel drug delivery systems and target therapeutics. This review focuses on nanotechnology and its therapeutic and diagnostic prospects in ophthalmology, specifically glaucoma. Nanotechnology and nanomedicine history, the human eye anatomy, research frontiers in nanomedicine and nanotechnology, its imaging modal quality, diagnostic and surgical approach, and its possible application in glaucoma will all be further explored below. Particular focus will be on the efficiency and safety of this new therapy and its advances.


Author(s):  
Naida Omerović ◽  
Edina Vranić

Conventional ophthalmic dosage forms, although being simple to apply and presenting great patients' compliance, display poorer drug bioavailability and retention time on the eye surface. To cope with these problems, one must formulate novel drug delivery systems, such as nanosystems, for ocular drug delivery. Different formulation methods of nanoparticles have been developed, but some of them, such as the supercritical fluid method, have not reached their full potential in ocular drug delivery. This article aims to present the possibilities of the supercritical fluid method when preparing nanosystems for ocular drug delivery. This method could be used more frequently and efficiently because it is environmentally friendly and produces nanoparticles of the desired physicochemical properties, which is especially important in ocular drug delivery considering its peculiarities. Modifications of the supercritical fluid method can be used when a drug has some specific properties, which is an additional benefit in ocular drug delivery.


2018 ◽  
Vol 60 (4) ◽  
Author(s):  
Kamal Dua ◽  
Rajendra Awasthi ◽  
Jyotsana R. Madan ◽  
Dinesh K. Chellappan ◽  
Buchi N. Nalluri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document