scholarly journals Stem Cell-Derived Exosomes Potential Therapeutic Roles in Cardiovascular Diseases

2021 ◽  
Vol 8 ◽  
Author(s):  
Selvaraj Jayaraman ◽  
Dhanavathy Gnanasampanthapandian ◽  
Johnson Rajasingh ◽  
Kanagaraj Palaniyandi

Owing to myocardial abnormalities, cardiac ailments are considered to be the major cause of morbidity and mortality worldwide. According to a recent study, membranous vesicles that are produced naturally, termed as “exosomes”, have emerged as the potential candidate in the field of cardiac regenerative medicine. A wide spectrum of stem cells has also been investigated in the treatment of cardiovascular diseases (CVD). Exosomes obtained from the stem cells are found to be cardioprotective and offer great hope in the treatment of CVD. The basic nature of exosomes is to deal with the intracellular delivery of both proteins and nucleic acids. This activity of exosomes helps us to rely on them as the attractive pharmaceutical delivery agents. Most importantly, exosomes derived from microRNAs (miRNAs) hold great promise in assessing the risk of CVD, as they serve as notable biomarkers of the disease. Exosomes are small, less immunogenic, and lack toxicity. These nanovesicles harbor immense potential as a therapeutic entity and would provide fruitful benefits if consequential research were focused on their upbringing and development as a useful diagnostic and therapeutic tool in the field of medicine.

2018 ◽  
Vol 15 (145) ◽  
pp. 20180388 ◽  
Author(s):  
Hannah Donnelly ◽  
Manuel Salmeron-Sanchez ◽  
Matthew J. Dalby

Mesenchymal stem cells, characterized by their ability to differentiate into skeletal tissues and self-renew, hold great promise for both regenerative medicine and novel therapeutic discovery. However, their regenerative capacity is retained only when in contact with their specialized microenvironment, termed the stem cell niche . Niches provide structural and functional cues that are both biochemical and biophysical, stem cells integrate this complex array of signals with intrinsic regulatory networks to meet physiological demands. Although, some of these regulatory mechanisms remain poorly understood or difficult to harness with traditional culture systems. Biomaterial strategies are being developed that aim to recapitulate stem cell niches, by engineering microenvironments with physiological-like niche properties that aim to elucidate stem cell-regulatory mechanisms, and to harness their regenerative capacity in vitro . In the future, engineered niches will prove important tools for both regenerative medicine and therapeutic discoveries.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Birbal Singh ◽  
Gorakh Mal ◽  
Vinod Verma ◽  
Ruchi Tiwari ◽  
Muhammad Imran Khan ◽  
...  

Abstract Background The global health emergency of COVID-19 has necessitated the development of multiple therapeutic modalities including vaccinations, antivirals, anti-inflammatory, and cytoimmunotherapies, etc. COVID-19 patients suffer from damage to various organs and vascular structures, so they present multiple health crises. Mesenchymal stem cells (MSCs) are of interest to treat acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2 infection. Main body Stem cell-based therapies have been verified for prospective benefits in copious preclinical and clinical studies. MSCs confer potential benefits to develop various cell types and organoids for studying virus-human interaction, drug testing, regenerative medicine, and immunomodulatory effects in COVID-19 patients. Apart from paving the ways to augment stem cell research and therapies, somatic cell nuclear transfer (SCNT) holds unique ability for a wide range of health applications such as patient-specific or isogenic cells for regenerative medicine and breeding transgenic animals for biomedical applications. Being a potent cell genome-reprogramming tool, the SCNT has increased prominence of recombinant therapeutics and cellular medicine in the current era of COVID-19. As SCNT is used to generate patient-specific stem cells, it avoids dependence on embryos to obtain stem cells. Conclusions The nuclear transfer cloning, being an ideal tool to generate cloned embryos, and the embryonic stem cells will boost drug testing and cellular medicine in COVID-19.


2021 ◽  
Author(s):  
Lianxu Cui ◽  
Yasmeen Saeed ◽  
Haomin Li ◽  
Jingli Yang

Traumatic brain injury (TBI) is a serious health concern, yet there is a lack of standardized treatment to combat its long-lasting effects. The objective of the present study was to provide an overview of the limitation of conventional stem cell therapy in the treatment of TBI and to discuss the application of novel acellular therapies and their advanced strategies to enhance the efficacy of stem cells derived therapies in the light of published study data. Moreover, we also discussed the factor to optimize the therapeutic efficiency of stem cell-derived acellular therapy by overcoming the challenges for its clinical translation. Hence, we concluded that acellular therapy possesses the potential to bring a breakthrough in the field of regenerative medicine to treat TBI.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 255 ◽  
Author(s):  
Miruna Mihaela Micheu ◽  
Alina Ioana Scarlatescu ◽  
Alexandru Scafa-Udriste ◽  
Maria Dorobantu

Despite significant progress in treating ischemic cardiac disease and succeeding heart failure, there is still an unmet need to develop effective therapeutic strategies given the persistent high-mortality rate. Advances in stem cell biology hold great promise for regenerative medicine, particularly for cardiac regeneration. Various cell types have been used both in preclinical and clinical studies to repair the injured heart, either directly or indirectly. Transplanted cells may act in an autocrine and/or paracrine manner to improve the myocyte survival and migration of remote and/or resident stem cells to the site of injury. Still, the molecular mechanisms regulating cardiac protection and repair are poorly understood. Stem cell fate is directed by multifaceted interactions between genetic, epigenetic, transcriptional, and post-transcriptional mechanisms. Decoding stem cells’ “panomic” data would provide a comprehensive picture of the underlying mechanisms, resulting in patient-tailored therapy. This review offers a critical analysis of omics data in relation to stem cell survival and differentiation. Additionally, the emerging role of stem cell-derived exosomes as “cell-free” therapy is debated. Last but not least, we discuss the challenges to retrieve and analyze the huge amount of publicly available omics data.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 379
Author(s):  
Rabia Ikram ◽  
Shamsul Azlin Ahmad Shamsuddin ◽  
Badrul Mohamed Jan ◽  
Muhammad Abdul Qadir ◽  
George Kenanakis ◽  
...  

Thanks to stem cells’ capability to differentiate into multiple cell types, damaged human tissues and organs can be rapidly well-repaired. Therefore, their applicability in the emerging field of regenerative medicine can be further expanded, serving as a promising multifunctional tool for tissue engineering, treatments for various diseases, and other biomedical applications as well. However, the differentiation and survival of the stem cells into specific lineages is crucial to be exclusively controlled. In this frame, growth factors and chemical agents are utilized to stimulate and adjust proliferation and differentiation of the stem cells, although challenges related with degradation, side effects, and high cost should be overcome. Owing to their unique physicochemical and biological properties, graphene-based nanomaterials have been widely used as scaffolds to manipulate stem cell growth and differentiation potential. Herein, we provide the most recent research progress in mesenchymal stem cells (MSCs) growth, differentiation and function utilizing graphene derivatives as extracellular scaffolds. The interaction of graphene derivatives in human and rat MSCs has been also evaluated. Graphene-based nanomaterials are biocompatible, exhibiting a great potential applicability in stem-cell-mediated regenerative medicine as they may promote the behaviour control of the stem cells. Finally, the challenges, prospects and future trends in the field are discussed.


2012 ◽  
Vol 1 (1) ◽  
pp. 75-82
Author(s):  
Jordan Greenberg ◽  
Veronica Fortino ◽  
Daniel Pelaez ◽  
Herman S. Cheung

Author(s):  
Sebastian Jessberger ◽  
Armin Curt ◽  
Roger A. Barker

A number of diseases of the brain and spinal cord are associated with substantial neural cell death and/or disruption of correct and functional neural networks. In the past, a variety of therapeutic strategies to rescue these systems have been proposed along with agents to induce functional plasticity within the remaining central nervous system (CNS) structures. In the case of injury or neurodegenerative disease these approaches have only met with limited success, indicating the need for novel approaches to treat diseases of the adult CNS. Recently, the idea of recruiting endogenous or transplanting stem cells to replace lost structures within the adult brain or spinal cord has gained significant attention, along with in situ reprogramming, and opened up novel therapeutic avenues in the context of regenerative medicine. Here we review recent advances in our understanding of how endogenous stem cells may be a part of pathological processes in certain neuropsychiatric diseases and summarize recent clinical and preclinical data suggesting that stem cell-based therapies hold great promise as a future treatment option in a number of diseases disrupting the proper function of the adult CNS.


Sign in / Sign up

Export Citation Format

Share Document