scholarly journals Single-Cell RNA-Seq of Bone Marrow Cells in Aplastic Anemia

2022 ◽  
Vol 12 ◽  
Author(s):  
Hu Tonglin ◽  
Zhao Yanna ◽  
Yu Xiaoling ◽  
Gao Ruilan ◽  
Yin Liming

Aplastic anemia (AA) is an autoimmune disease characterized by peripheral blood pancytopenia and bone marrow failure. Recently, a research study verified bone marrow failure of AA patients resulting from hematopoietic stem and progenitor cell (HSPC) attack by active T cells. Nonetheless, whether B cells, as one of the important immune cells, destruct the hematopoiesis is still unclear. Here, a large-scale single-cell transcriptomic sequencing of 20,000 bone marrow cells from AA patients and healthy donors was performed. A total of 17 clusters and differentially expressed genes were identified in each cluster relative to other clusters, which were considered potential marker genes in each cluster. The top differentially expressed genes in HSPCs (S100A8, RETN, and TNFAIP3), monocytes (CXCL8, JUN, and IL1B), and neutrophils and granulocytes (CXCL8, NFKBIA, and MT-CYB) were related to immune and inflammatory injury. Then, the B-cell receptor (BCR) diversities and pairing frequencies of V and J genes were analyzed. The highest pairing frequencies in AA patients were IGHV3-20-IGKJ2, IGHV3-20-IGKJ4, and IGHV3-20-IGHLJ2. Meanwhile, there were 3 V genes, including IGHV3-7, IGHV3-33, and IGLV2-11, with elevated expression in B cells from AA patients. Cell type–specific ligand–receptor was further identified in B-cell interaction with hematopoietic cells in the bone marrow. The changed ligand–receptor pairs involved antigen presentation, inflammation, apoptosis, and proliferation of B cells. These data showed the transcriptomic landscape of hematopoiesis in AA at single-cell resolution, providing new insights into hematopoiesis failure related with aberrance of B cells, and provide available targets of treatment for AA.

1990 ◽  
Vol 10 (7) ◽  
pp. 3562-3568
Author(s):  
M Principato ◽  
J L Cleveland ◽  
U R Rapp ◽  
K L Holmes ◽  
J H Pierce ◽  
...  

Murine bone marrow cells infected with replication-defective retroviruses containing v-raf alone or v-myc alone yielded transformed pre-B cell lines, while a retroviral construct containing both v-raf and v-myc oncogenes produced clonally related populations of mature B cells and mature macrophages. The genealogy of these transformants demonstrates that mature myeloid cells were derived from cells with apparent B-lineage commitment and functional immunoglobulin rearrangements. This system should facilitate studies of developmental relationships in hematopoietic differentiation and analysis of lineage determination.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1569-1569
Author(s):  
Kilannin Krysiak ◽  
Justin Tibbitts ◽  
Matthew J. Walter

Abstract Myeloid and erythroid differentiation defects and cytopenias are most commonly described in myelodysplastic syndromes (MDS), however, a reduction in B-cell progenitors exists. The genetic events contributing to this reduction are poorly understood. Interstitial deletion or loss of one copy of the long arm of chromosome 5 (del5q) is the most common cytogenetic abnormality associated with MDS. Two commonly deleted regions on del(5q) have been described and no biallelic mutations have been identified implicating haploinsufficiency of genes on this interval as a driving mechanism. We, and others, have identified several del(5q) candidate genes, including RPS14, EGR1, CTNNA1, APC, NPM1, DIAPH1, miR145, miR146a, and HSPA9. Consistent with haploinsufficiency, HSPA9 mRNA levels are 50% reduced in del(5q) patients. We previously showed that knockdown of Hspa9by shRNA in a murine bone marrow transplant model resulted in a significant reduction in murine B-cells in the bone marrow, spleen and peripheral blood. To further characterize the role of Hspa9 in hematopoiesis, we created Hspa9 heterozygous mice (Hspa9+/-). Heterozygotes express 50% less Hspa9 protein and are born at normal Mendelian frequencies (N>100). No significant differences in mature lineage markers, complete blood counts, and hematopoietic organ cellularity, have been identified up to 12 months of age. However, as early as 2 months of age, Hspa9+/- mice show a significant reduction in CFU-PreB colonies compared to their wild-type littermates, indicating B-cell progenitor defects (14 vs. 48 colonies/100,000 bone marrow cells plated, respectively, N=10 mice/genotype, p<0.001). Following long-term engraftment of transplanted bone marrow cells from Hspa9+/-or littermate controls into lethally irradiated recipients, we also observed a 5.8-fold reduction in bone marrow CFU-PreB colonies (N=7-9 mice/genotype, p=0.002), confirming the B-cell progenitor defect is hematopoietic cell-intrinsic. Despite the reduction in CFU-PreB colony numbers, frequencies of freshly isolated early B-cell progenitor and precursor populations in the bone marrow and spleen of Hspa9+/- mice are not different than wild-type littermate controls when assessed by flow cytometry (common lymphoid progenitor, Hardy fractions A-F). We hypothesized that these mice were able to compensate for B-cell alterations caused by loss of Hspa9 in vivo. Consistent with our hypothesis, the reduction in CFU-PreB colony numbers was partially rescued by increasing the concentration of IL-7 in the media. Hspa9+/- colony numbers increased 1.8 fold when the IL-7 concentration was increased from 10ng/mL to 50ng/mL compared to 0.80 fold for wild-type littermates (p=0.03, N=6 mice/genotype). This effect was unique to IL-7. Adding increasing concentrations of Flt-3 ligand, another cytokine that contributes to early B-cell development, did not alter CFU-PreB colony formation. We isolated B220+ cells from Day 7 CFU-PreB cultures for gene expression array analysis and observe reduced expression of genes promoting B-cell proliferation and activation in Hspa9+/- compared to Hspa9+/+ cells. Since IL-7 is the only supportive cytokine in the methylcellulose media, can partially rescue the reduced CFU-PreB phenotype, and is required for early B-cell development and survival, we hypothesized that Hspa9 haploinsufficiency inhibits transduction of IL-7 signaling. We tested this hypothesis using an IL-7 dependent mouse B-cell line (B7 cells; Ba/F3 cells that stably express the IL-7 receptor). Knockdown of Hspa9 by siRNAs resulted in a 8-fold reduction in cell number after 4 days in culture (p=0.004, confirmed with two independent siRNAs) and was associated with an increase in apoptosis and reduction in cells in S-phase of the cell cycle. Knockdown of Hspa9 in B7 cells resulted in reduced levels of phosphorylated Stat5, an immediate downstream target of IL-7 receptor stimulation, compared to cells treated with a non-targeting siRNA (measured at 5, 10, 15 and 30 minutes following 10ng/mL IL-7 stimulation, p≤0.03). Ongoing studies will further interrogate the effects of Hsap9 knockdown on Jak-Stat signaling. Collectively, these data implicate that loss of HSPA9 alters IL-7 signaling, potentially contributing to the reduction of B-cell progenitors observed in patients with del(5q)-associated MDS. Disclosures: No relevant conflicts of interest to declare.


1977 ◽  
Vol 145 (5) ◽  
pp. 1382-1386 ◽  
Author(s):  
E S Metcalf ◽  
N H Sigal ◽  
N R Klinman

The susceptibility to in vitro tolerance induction has been implicated as a characteristic of B cells early in their development, since DNP-reactive B cells are tolerizable only during the first days after birth, and 25% of adult bone marrow cells are tolerizable. In the present study, a modification of the in vitro splenic focus technique was utilized to determine if PC-specific B cells, by virtue of their late expression (approximately 1 wk post-parturition), also display susceptibility to tolerance induction. The results demonstrate that at 7-10 days after birth, when over 90% of the DNP-specific splenic B cells are resistant to tolerance induction, the majority of PC-specific B cells are tolerizable. These results re-emphasize tolerance susceptibility as a characteristic of developing clones, confirm the late acquisition of PC-specific B cells, and support the contention that the acquisition of the specificity repertoire is a highly ordered, specifically predetermined process which is independent of antigen-driven events.


1986 ◽  
Vol 6 (1) ◽  
pp. 183-194
Author(s):  
L A Serunian ◽  
N Rosenberg

Abelson murine leukemia virus (A-MuLV) infection of mouse bone marrow cells usually leads to transformation of pre-B cells. However, when the environment is modified by the continuous presence of lipopolysaccharide (LPS), two novel types of membrane immunoglobulin (mIg)-positive B cell lines are generated. Because the cells which give rise to these cell lines copurify with mIg-positive bone marrow cells, the cell lines arise as a result of A-MuLV interaction with a new type of in vitro target cell. The cell lines generated fall into two groups which differ in several phenotypic characteristics. Group 1 cells are more differentiated than the typical pre-B cell transformant in that they synthesize mIgM and appear to resemble virgin B cells. The group 1 cells do not secrete immunoglobulin and are independent of LPS for growth. In addition, these cell lines synthesize the Abelson P160 protein, contain integrated abl proviral DNA, and are highly tumorigenic in syngeneic animals. The group 2 cell lines differ markedly from both the group 1 cells and from typical, pre-B cell A-MuLV transformants. These cells are mIgG positive and secrete large amounts of immunoglobulin into the culture medium. The cell lines are comprised of both adherent and nonadherent cells and do not synthesize P160 or contain integrated v-abl sequences. The group 2 cells are nontumorigenic in syngeneic animals and require LPS for growth and viability. Both types of cells have remained in culture for over 2 years with no changes in their phenotypic characteristics. This A-MuLV infection system and the novel mIg-positive cell lines may serve as useful models for studying biochemical and molecular properties of mature B cells.


1990 ◽  
Vol 10 (7) ◽  
pp. 3562-3568 ◽  
Author(s):  
M Principato ◽  
J L Cleveland ◽  
U R Rapp ◽  
K L Holmes ◽  
J H Pierce ◽  
...  

Murine bone marrow cells infected with replication-defective retroviruses containing v-raf alone or v-myc alone yielded transformed pre-B cell lines, while a retroviral construct containing both v-raf and v-myc oncogenes produced clonally related populations of mature B cells and mature macrophages. The genealogy of these transformants demonstrates that mature myeloid cells were derived from cells with apparent B-lineage commitment and functional immunoglobulin rearrangements. This system should facilitate studies of developmental relationships in hematopoietic differentiation and analysis of lineage determination.


1985 ◽  
Vol 161 (6) ◽  
pp. 1554-1568 ◽  
Author(s):  
K Hayakawa ◽  
R R Hardy ◽  
L A Herzenberg ◽  
L A Herzenberg

Data from previous multiparameter fluorescence-activated cell sorter (FACS) analysis and sorting studies define a subset of murine B cells that expresses the Ly-1 surface determinant in conjunction with IgM, IgD, Ia, and other typical B cell markers. These Ly-1 B cells are physically and functionally distinct. They express more IgM and less IgD than most other B cells; they are not normally found in lymph node or bone marrow; they are always present at low frequencies (1-5%) in normal spleens, and, as we show here, they comprise about half of the B cells (10-20% of total cells) recovered from the peritoneal cavity in normal mice. Furthermore, most of the commonly studied IgM autoantibodies in normal and autoimmune mice are produced by these Ly-1 B cells, even though they seldom produce antibodies to exogenous antigens such as trinitrophenyl-Ficoll or trinitrophenyl-keyhole limpet hemocyanin. Cell transfer studies presented here demonstrate that the progenitors of Ly-1 B cells are different from the progenitors of the predominant B cell populations in spleen and lymph node. In these studies, we used FACS analysis and functional assays to characterize donor-derived (allotype-marked) B cells present in lethally irradiated recipients 1-2 mo after transfer. Surprisingly, adult bone marrow cells typically used to reconstitute B cells in irradiated recipients selectively failed to reconstitute the Ly-1 B subset. Liver, spleen, and bone marrow cells from young mice, in contrast, reconstituted all B cells (including Ly-1 B), and peritoneal "washout" cells (PerC) from adult mice uniquely reconstituted Ly-1 B. Bone marrow did not block Ly-1 B development, since PerC and newborn liver still gave rise to Ly-1 B when jointly transferred with marrow. These findings tentatively assign Ly-1 B to a distinct developmental lineage originating from progenitors that inhabit the same locations as other B cell progenitors in young animals, but move to unique location(s) in adults.


1986 ◽  
Vol 6 (1) ◽  
pp. 183-194 ◽  
Author(s):  
L A Serunian ◽  
N Rosenberg

Abelson murine leukemia virus (A-MuLV) infection of mouse bone marrow cells usually leads to transformation of pre-B cells. However, when the environment is modified by the continuous presence of lipopolysaccharide (LPS), two novel types of membrane immunoglobulin (mIg)-positive B cell lines are generated. Because the cells which give rise to these cell lines copurify with mIg-positive bone marrow cells, the cell lines arise as a result of A-MuLV interaction with a new type of in vitro target cell. The cell lines generated fall into two groups which differ in several phenotypic characteristics. Group 1 cells are more differentiated than the typical pre-B cell transformant in that they synthesize mIgM and appear to resemble virgin B cells. The group 1 cells do not secrete immunoglobulin and are independent of LPS for growth. In addition, these cell lines synthesize the Abelson P160 protein, contain integrated abl proviral DNA, and are highly tumorigenic in syngeneic animals. The group 2 cell lines differ markedly from both the group 1 cells and from typical, pre-B cell A-MuLV transformants. These cells are mIgG positive and secrete large amounts of immunoglobulin into the culture medium. The cell lines are comprised of both adherent and nonadherent cells and do not synthesize P160 or contain integrated v-abl sequences. The group 2 cells are nontumorigenic in syngeneic animals and require LPS for growth and viability. Both types of cells have remained in culture for over 2 years with no changes in their phenotypic characteristics. This A-MuLV infection system and the novel mIg-positive cell lines may serve as useful models for studying biochemical and molecular properties of mature B cells.


Blood ◽  
1995 ◽  
Vol 85 (7) ◽  
pp. 1850-1857 ◽  
Author(s):  
MS Merchant ◽  
BA Garvy ◽  
RL Riley

New Zealand Black (NZB) autoimmune mice exhibit progressive, age-dependent reduction in bone marrow pre-B cells. To ascertain the capacity of NZB bone marrow B220-cells to generate pre-B cells in a supportive environment, B-lineage (B220+) cell-depleted and T-cell-depleted bone marrow cells from NZB mice at 1 to 3, 6, and 10 to 11 months of age were adoptively transferred into irradiated (200R) C.B17 severe combined immunodeficient (SCID) mice. Bone marrow pre-B cells (sIgM- CD43[S7]- B220+) were assessed 3 and 10 weeks posttransfer. Pre-B cells and B cells were reconstituted in SCID recipients of older NZB progenitor cells by 10 weeks posttransplant, in contrast to the very low numbers of pre-B cells present in the donor bone marrow. However, B220-bone marrow progenitor cells from greater than 10-month-old NZB donors were deficient in the reconstitution of both pre-B and B cells in SCID recipients at 3 weeks post-transfer. This reflected a slower kinetics of repopulation, because older NZB-->SCID recipients had numbers of both pre-B and B cells similar to recipients of young NZB progenitor cells by 10 weeks posttransplant. Adoptive transfer of equal mixtures of BALB/c and older NZB bone marrow B220-progenitor cells into irradiated C.B17 SCID recipients failed to demonstrate active suppression. These results suggest that, with age, NZB bone marrow has reduced numbers and/or function of early B220-B-lineage progenitors. Consistent with this hypothesis, B220-bone marrow cells from older NZB mice were deficient in progenitors capable of yielding interleukin-7 (IL-7) responsive pre-B cells in vitro on stimulation with the pre-B-cell potentiating factor, insulin-like growth factor 1 (IGF-1).


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 431-431
Author(s):  
Hidekazu Nishikii ◽  
Antonio Pierini ◽  
Yasuhisa Yokoyama ◽  
Takaharu Kimura ◽  
Hye-Sook Kwon ◽  
...  

Abstract Background: Foxp3+regulatory T cells (Treg) are a subpopulation of T cells, which regulate the immune system, maintain self-tolerance and enhance immune tolerance after transplantation. It was also reported that recipient derived Treg could provide immune privilege niche to allogeneic hematopoietic stem cells (HSC) after transplantation. However, the precise role of Treg in hematopoiesis has not been fully elucidated. Methods: We used Foxp3-DTR mice (B6, CD45.2) for in vivo depletion of Treg through diphtheria toxin (DT) injection and investigated whether Treg depletion would affect hematopoiesis derived from HSC. To investigate whether Treg depletion affects the function of the bone marrow microenvironment, we transplanted wild type bone marrow cells into lethally irradiated Foxp3-DTR mice after Treg depletion. Results: We found 1) a significant defect on B cell progenitors including mature B cells (IgM+B220+, P<0.001), pre-B cells (IgM-B220+CD19+cKit-, P<0.001) and pro-B cells (IgM-B220+CD19+cKit+, P<0.05), 2) LT-HSC population (CD34-/lowFlit3-cKit+Sca1+Lin-) was significantly expanded (p<0.01) and entered into cell cycle, 3) the residual Foxp3-CD4+ or CD8+ T cells in the bone marrow had an activated immune phenotype and clustered at sinusoids when bone marrow cells from Treg depleted mice were analyzed. Expanded LT-HSC from Treg depleted mice had reduced long-term reconstitution capacity when we performed competitive repopulation experiments using purified LT-HSC from Foxp3-DTR mice with or without Treg depletion (100 cells/mice, CD45.2), total bone marrow cells (2x10e5/mice, B6-F1, CD45.1/CD45.2) and congenic recipient mice (lethally irradiated B6, CD45.1). B cell reconstitution was also severely abrogated following transplantation using Treg depleted mice as recipients (p<0.01). In those mice, we observed a significant reduction of IL-7 production (p<0.01). Interestingly, we found that a subpopulation of CD45-TER119-CD31- ICAM1+ perivascular stromal cells are a major source of IL-7 in the bone marrow. ICAM1+ perivascular stromal cells also secrete SCF and CXCL12, which is crucial for the maintenance of LT-HSC. In Treg depleted BM cells, a significant reduction in IL-7 secretion from ICAM1+ perivascular stromal cells was observed, suggesting that this population is the target of activated T cells after Treg depletion. Conclusions: These data demonstrate that Treg play a key role in B cell differentiation from HSCs by maintaining the immunological homeostasis in the bone marrow microenvironment. These data provide new insights into Treg biology and function in normal and stress hematopoiesis. Disclosures Negrin: Stanford University: Patents & Royalties.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4717-4717
Author(s):  
Chantal Lagresle-Peyrou ◽  
Michèle Milili ◽  
Julien Rouiller ◽  
Capucine Picard ◽  
Marina Cavazzana-Calvo ◽  
...  

Abstract Abstract 4717 Blnk deficiency is an autosomal recessive immune disorder characterized by the absence of B cells in periphery and the absence of any seric immunoglobulins due to an early blocage at the pro-B cell stage in the bone marrow. The very rare patients affected by blnk deficiency develop severe infections. In the murine model of the disease, a similar blocage in B cell development is described as well as susceptibility to infections and to pre-B lymphomas. A homozygote stop mutation in blnk gene was identified in a 8-yr old boy. Bone marrow cells analysis revealed that CD34+CD10+CD24-CD19- lymphoid progenitors were present as well as CD34+CD10+CD24+CD19- early B cells and CD34+CD19+ pro B cells. However, no surface IgM or seric Ig were detected in this patient. To demonstrate the implication of Blnk in the B-cell differentiation process, we transduced CD34+ sorted bone marrow cells from this patient with a lentiviral construct containing human wild type Blnk cDNA. The transduced cells were intravenously injected into irradiated NOD/SCID/IL2rg knock-out mice. Twelve weeks after transplantation, recipients were analysed. Human engraftment was detected in bone marrow and spleen. Among bone marrow human CD45+ cells, more than 80% were CD19+ and 6 to 8% express surface IgM. In the spleen, between 14 and 30% of CD19+ cells were detected. Eight to 42% of CD19+ cells expressed surface IgM. This is the first demonstration that Blnk is absolutely required for the differentiation of pro-B cells toward mature B cells. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document