scholarly journals Temperature and Patterns of Occurrence and Abundance of Key Copepod Taxa in the Northeast Pacific

2021 ◽  
Vol 8 ◽  
Author(s):  
Lauren Ashlock ◽  
Marisol García-Reyes ◽  
Chelle Gentemann ◽  
Sonia Batten ◽  
William Sydeman

The Northeast Pacific is a highly heterogeneous and productive ecosystem, yet it is vulnerable to climate change and extreme events such as marine heat waves. Recent heat wave induced die-offs of fish, marine mammals, and seabirds in the Gulf of Alaska were associated with the loss of large, lipid-rich copepods, which are a vital food resource for forage fishes. The critical and temperature sensitive role of copepods in this ecosystem motivates our investigation into the impacts of temperature on copepod occurrence, abundance, and phenology. Here, we pair long term in situ copepod data from Continuous Plankton Recorder surveys with satellite temperature data to determine the influence of water temperature on three key copepod taxa: Neocalanus plumchrus, Calanus pacificus, and Oithona spp. Through the use of linear models and thermal threshold methods, we demonstrate that N. plumchrus is most vulnerable to warming and future marine heat waves in this region. Linear models demonstrate that N. plumchrus abundance is negatively related to temperature, and thermal threshold methods reveal that N. plumchrus has an upper thermal threshold of 11.5°C for occurrence, and 10.5°C for abundance. Additionally, examining N. plumchrus abundance before and during the 2014–2016 marine heat wave demonstrates reduced species abundance during past warming events. Oithona spp. and C. pacificus appear to be less vulnerable to warm temperatures. However, their presence will not be sufficient to supplement the loss of the larger-bodied and lipid-rich N. plumchrus. Our findings demonstrate the power of using long-term in situ data to determine thermal tolerances, and suggest the need to further examine the potential resilience of N. plumchrus to climate change.

2020 ◽  
Vol 10 (3) ◽  
pp. 1149 ◽  
Author(s):  
Alfredo Rocha ◽  
Susana C. Pereira ◽  
Carolina Viceto ◽  
Rui Silva ◽  
Jorge Neto ◽  
...  

Heat waves are large-scale atmospheric phenomena that may cause heat stress in ecosystems and socio-economic activities. In cities, morbidity and mortality may increase during a heat wave, overloading health and emergency services. In the face of climate change and associated warming, cities need to adapt and mitigate the effects of heat waves. This study suggests a new method to evaluate heat waves’ impacts on cities by considering some aspects of heat waves that are not usually considered in other similar studies. The method devises heat wave quantities that are easy to calculate; it is relevant to assessing their impacts and permits the development of adaptation measures. This study applies the suggested method to quantify various aspects of heat waves in Lisbon for future climate projections considering future mid-term (2046–2065) and long-term (2081–2100) climates under the RCP8.5 greenhouse emission scenario. This is achieved through the analysis of various regional climate simulations performed with the WRF model and an ensemble of EURO-CORDEX models. This allows an estimation of uncertainty and confidence of the projections. To evaluate the climate change properties of heat waves, statistics for future climates are compared to those for a reference recent climate. Simulated temperatures are first bias corrected to minimize the model systematic errors relative to observations. The temperature for mid and long-term futures is expected to increase relative to the present by 1.6 °C and 3.6 °C, respectively, with late summer months registering the highest increases. The number of heat wave days per year will increase on average from 10, in the present climate, to 38 and 63 in mid and long-term climates, respectively. Heat wave duration, intensity, average maximum temperature, and accumulated temperature during a heat wave will also increase. Heat waves account for an annual average of accumulated temperature of 358 °C·day in the present climate, while in the mid and long-term, future climates account for 1270 °C·day and 2078 °C·day, respectively. The largest increases are expected to occur from July to October. Extreme intensity and long-duration heat waves with an average maximum temperature of more than 40 °C are expected to occur in the future climates.


2019 ◽  
Vol 32 (14) ◽  
pp. 4431-4443 ◽  
Author(s):  
Linyin Cheng ◽  
Martin Hoerling ◽  
Zhiyong Liu ◽  
Jon Eischeid

Abstract Although the link between droughts and heat waves is widely recognized, how climate change affects this link remains uncertain. Here we assess how, and by how much, human-induced climate change affects summertime hot drought compound events over the contiguous United States. Results are derived by comparing hot drought statistics in long simulations of a coupled climate model (CESM1) subjected to year-1850 and year-2000 radiative forcings. Within each climate state, a strong and nonlinear dependency of heat-wave intensity on drought severity is found in water-limited regions of the southern Great Plains and southwestern United States whereas heat-wave intensity is found to be insensitive to drought severity in energy-limited regions of the northern and/or northeastern United States. Applying a statistical model that is based on pair-copula constructions, we find that anthropogenic warming leads to enhanced soil moisture–temperature coupling in water-limited areas of the southern Great Plains and/or southwestern United States and consequently amplifies the intensity of extreme heat waves during severe droughts. This strengthened coupling accounts for a substantial fraction of rising temperature extremes related to the long-term climate change in CESM1, highlighting the importance of changes in land–atmosphere feedback in a warmer climate. In contrast, coupling effects remain weak and largely unchanged in energy-limited regions, thereby yielding no appreciable contribution to heat-wave intensification over the northern and/or northeastern United States apart from the long-term warming effects.


2018 ◽  
Vol 39 (4) ◽  
pp. 2422-2437 ◽  
Author(s):  
Daniel Fenner ◽  
Achim Holtmann ◽  
Alexander Krug ◽  
Dieter Scherer

2021 ◽  
Author(s):  
Natalia Korhonen ◽  
Otto Hyvärinen ◽  
Matti Kämäräinen ◽  
Kirsti Jylhä

<p>Severe heatwaves have harmful impacts on ecosystems and society. Early warning of heat waves help with decreasing their harmful impact. Previous research shows that the Extended Range Forecasts (ERF) of the European Centre for Medium-Range Weather Forecasts (ECMWF) have over Europe a somewhat higher reforecast skill for extreme hot summer temperatures than for long-term mean temperatures. Also it has been shown that the reforecast skill of the ERFs of the ECMWF was strongly increased by the most severe heat waves (the European heatwave 2003 and the Russian heatwave 2010).</p><p>Our aim is to be able to estimate the skill of a heat wave forecast at the time the forecast is given. For that we investigated the spatial and temporal reforecast skill of the ERFs of the ECMWF to forecast hot days (here defined as a day on which the 5 days running mean surface temperature is above its summer 90<sup>th</sup> percentile) in the continental Europe in summers 2000-2019. We used the ECMWF 2-meter temperature reforecasts and verified them against the ERA5 reanalysis. The skill of the hot day reforecasts was estimated by the symmetric extremal dependence index (SEDI) which considers both hit rates and false alarm rates of the hot day forecasts. Further, we investigated the skill of the heatwave reforecasts based on at which time steps of the forecast the hot days were forecasted. We found that on the mesoscale (horizontal scale of ~500 km) the ERFs of the ECMWF were most skillful in predicting the life cycle of a heat wave (lasting up to 25 days) about a week before its start and during its course. That is, on the mesoscale those reforecasts, in which hot day(s) were forecasted to occur during the first 7…11 days, were more skillful on lead times up to 25 days than the rest of the heat wave forecasts. This finding is valuable information, e.g., in the energy and health sectors while preparing for a coming heat wave.</p><p>The work presented here is part of the research project HEATCLIM (Heat and health in the changing climate) funded by the Academy of Finland.</p>


2018 ◽  
Author(s):  
Athanasia Iona ◽  
Athanasios Theodorou ◽  
Sarantis Sofianos ◽  
Sylvain Watelet ◽  
Charles Troupin ◽  
...  

Abstract. We present a new product composed of a set of thermohaline climatic indices from 1950 to 2015 for the Mediterranean Sea such as decadal temperature and salinity anomalies, their mean values over selected depths, decadal ocean heat and salt content anomalies at selected depth layers as well as their long times series. It is produced from a new high-resolution climatology of temperature and salinity on a 1/8° regular grid based on historical high quality in situ observations. Ocean heat and salt content differences between 1980–2015 and 1950–1979 are compared for evaluation of the climate shift in the Mediterranean Sea. The spatial patterns of heat and salt content shifts demonstrate in greater detail than ever before that the climate changes differently in the several regions of the basin. Long time series of heat and salt content for the period 1950 to 2015 are also provided which indicate that in the Mediterranean Sea there is a net mean volume warming and salting since 1950 with acceleration during the last two decades. The time series also show that the ocean heat content seems to fluctuate on a cycle of about 40 years and seems to follow the Atlantic Multidecadal Oscillation climate cycle indicating that the natural large scale atmospheric variability could be superimposed on to the warming trend. This product is an observations-based estimation of the Mediterranean climatic indices. It relies solely on spatially interpolated data produced from in-situ observations averaged over decades in order to smooth the decadal variability and reveal the long term trends with more accuracy. It can provide a valuable contribution to the modellers' community, next to the satellite-based products and serve as a baseline for the evaluation of climate-change model simulations contributing thus to a better understanding of the complex response of the Mediterranean Sea to the ongoing global climate change. The product is available here: https://doi.org/10.5281/zenodo.1210100.


2019 ◽  
Vol 76 (Suppl 1) ◽  
pp. A73.2-A73
Author(s):  
Matthias Otto ◽  
Tord Kjellstrom ◽  
Bruno Lemke

Exposure to extreme heat negatively affects occupational health. Heat stress indices like Wet Bulb Globe Temperature (WBGT) combine temperature and humidity and allow quantifying the climatic impact on human physiology and clinical health. Multi-day periods of high heat stress (aka. heat waves) affect occupational health and productivity independently from the absolute temperature levels; e.g. well-documented heat-waves in Europe caused disruption, hospitalisations and deaths (2003 French heat wave: more than 1000 extra deaths, 15–65 years, mainly men) even though the temperatures were within the normal range of hotter countries.Climate change is likely to increase frequency and severity of periods of high heat stress. However, current global grid-cell based climate models are not designed to predict heat waves, neither in terms of severity or frequency.By analysing 37 years of historic daily heat index data from almost 5000 global weather stations and comparing them to widely used grid-cell based climate model outputs over the same period, our research explores methods to assess the frequency and intensity of heat waves as well as the associated occupational health effects at any location around the world in the future.Weather station temperature extreme values (WBGT) for the 3 hottest days in 30 years exceed the mean WBGT of the hottest month calculated from climate models in the same grid-cell by about 2 degrees in the tropics but by 10 degrees at higher latitudes in temperate climate regions.Our model based on the relationship between actual recorded periods of elevated heat-stress and grid-cell based climate projections, in combination with population and employment projections, can quantify national and regional productivity loss and health effects with greater certainty than is currently the case.


2019 ◽  
Vol 286 (1898) ◽  
pp. 20190018 ◽  
Author(s):  
Amelia R. Cox ◽  
Raleigh J. Robertson ◽  
Ádám Z. Lendvai ◽  
Kennedy Everitt ◽  
Frances Bonier

As species shift their ranges and phenology to cope with climate change, many are left without a ready supply of their preferred food source during critical life stages. Food shortages are often assumed to be driven by reduced total food abundance, but here we propose that climate change may cause short-term food shortages for foraging specialists without affecting overall food availability. We frame this hypothesis around the special case of birds that forage on flying insects for whom effects mediated by their shared food resource have been proposed to cause avian aerial insectivores' decline worldwide. Flying insects are inactive during cold, wet or windy conditions, effectively reducing food availability to zero even if insect abundance remains otherwise unchanged. Using long-term monitoring data from a declining population of tree swallows ( Tachycineta bicolor ), we show that nestlings’ body mass declined substantially from 1977 to 2017. In 2017, nestlings had lower body mass if it rained during the preceding 3 days, though females increased provisioning rates, potentially in an attempt to compensate. Adult body mass, particularly that of the males, has also declined over the long-term study. Mean rainfall during the nestling period has increased by 9.3 ± 0.3 mm decade −1 , potentially explaining declining nestling body mass and population declines. Therefore, we suggest that reduced food availability, distinct from food abundance, may be an important and previously overlooked consequence of climate change, which could be affecting populations of species that specialize on foraging on flying insects.


Author(s):  
Ola Langvall ◽  
Mikaell Ottosson Löfvenius

Abstract Because climate change alters patterns of vegetative growth, long-term phenological measurements and observations can provide important data for analyzing its impact. Phenological assessments are usually made as records of calendar dates when specific phase changes occur. Such assessments have benefits and are used in Citizen Science monitoring. However, these kinds of data often have low statistical precision when describing gradual changes. Frequent monitoring of the phenological traits of forest trees and berries as they undergo gradual change is needed to acquire good temporal resolution of transitions relative to other factors, such as susceptibility to frosts, insects, and fungi, and the use of berries as a food resource. Intensive weekly monitoring of the growth of apical and branch buds and the elongation of shoots and leaves on four tree species, and the abundance of flowers and berries of bilberry and lingonberry, has been performed in Sweden since 2006. Here, we present quantitative methods for interpolating such data, which detail the gradual changes between assessments in order to describe average rates of development and amount of interannual variation. Our analysis has shown the active growth period of trees to differ with latitude. We also observed a change in the timing of the maximum numbers of ripening berries and their successive decline. Data from tree phenology assessments can be used to recommend best forestry practice and to model tree growth, while berry data can be used to estimate when food resources for animals are most available.


2020 ◽  
Author(s):  
Paul Hamer ◽  
Heidelinde Trimmel ◽  
Philipp Weihs ◽  
Stéphanie Faroux ◽  
Herbert Formayer ◽  
...  

<p>Climate change threatens to exacerbate existing problems in urban areas arising from the urban heat island. Furthermore, expansion of urban areas and rising urban populations will increase the numbers of people exposed to hazards in these vulnerable areas. We therefore urgently need study of these environments and in-depth assessment of potential climate adaptation measures.</p><p>We present a study of heat wave impacts across the urban landscape of Vienna for different future development pathways and for both present and future climatic conditions. We have created two different urban development scenarios that estimate potential urban sprawl and optimized development concerning future building construction in Vienna and have built a digital representation of each within the Town Energy Balance (TEB) urban surface model. In addition, we select two heat waves of similar frequency of return representative for present and future conditions (following the RCP8.5 scenario) of the mid 21<sup>st</sup> century and use the Weather Research and Forecasting Model (WRF) to simulate both heat wave events. We then couple the two representations urban Vienna in TEB with the WRF heat wave simulations to estimate air temperature, surface temperatures and human thermal comfort during the heat waves. We then identify and apply a set of adaptation measures within TEB to try to identify potential solutions to the problems associated with the urban heat island.</p><p>Global and regional climate change under the RCP8.5 scenario causes the future heat wave to be more severe showing an increase of daily maximum air temperature in Vienna by 7 K; the daily minimum air temperature will increase by 2-4 K. We find that changes caused by urban growth or densification mainly affect air temperature and human thermal comfort local to where new urbanisation takes place and does not occur significantly in the existing central districts.</p><p>Exploring adaptation solutions, we find that a combination of near zero-energy standards and increasing albedo of building materials on the city scale accomplishes a maximum reduction of urban canyon temperature of 0.9 K for the minima and 0.2 K for the maxima. Local scale changes of different adaption measures show that insulation of buildings alone increases the maximum wall surface temperatures by more than 10 K or the maximum mean radiant temperature (MRT) in the canyon by 5 K.  Therefore, additional adaptation to reduce MRT within the urban canyons like tree shade are needed to complement the proposed measures.</p><p>This study concludes that the rising air temperatures expected by climate change puts an unprecedented heat burden on Viennese inhabitants, which cannot easily be reduced by measures concerning buildings within the city itself. Additionally, measures such as planting trees to provide shade, regional water sensitive planning and global reduction of greenhouse gas emissions in order to reduce temperature extremes are required.</p><p>We are now actively seeking to apply this set of tools to a wider set of cases in order to try to find effective solutions to projected warming resulting from climate change in urban areas.</p>


Author(s):  
S. Snizhko ◽  
O. Shevchenko ◽  
H. Svintsitska

On the basis of 10 selected stations of the meteorological network heat wave episodes for Сentral regions of Ukraine in the summer months June to August in 1961–2015 have been identified. Duration, intensity and temporal variability of heat wave cases are analyzed. It is proved that the heat wave observed at the end of July – the first part of August 2010 was the longest and the most intense nearly for all stations of the Central regions of Ukraine during the research period. Keywords: heat wave, heat wave duration, heat wave intensity, climate change.


Sign in / Sign up

Export Citation Format

Share Document