extended range
Recently Published Documents


TOTAL DOCUMENTS

1207
(FIVE YEARS 231)

H-INDEX

50
(FIVE YEARS 6)

2022 ◽  
pp. 1-49

Abstract In this study, we examine the wintertime environmental precursors of summer anticyclonic wave breaking (AWB) over the North Atlantic region and assess the applicability of these precursors in predicting AWB impacts on seasonal tropical cyclone (TC) activity. We show that predictors representing the environmental impacts of subtropical AWB on seasonal TC activity improve the skill of extended-range seasonal forecasts of TC activity. There is a significant correlation between boreal winter and boreal summer AWB activity via AWB-forced phases of the quasi-stationary North Atlantic Oscillation (NAO). Years with above-normal boreal summer AWB activity over the North Atlantic region also show above-normal AWB activity in the preceding boreal winter that tends to force a positive phase of the NAO that persists through the spring. These conditions are sustained by continued AWB throughout the year, particularly when El Niño-Southern Oscillation plays less of a role at forcing the large-scale circulation. While individual AWB events are synoptic and nonlinear with little predictability beyond 8-10 days, the strong dynamical connection between winter and summer wave breaking lends enough persistence to AWB activity to enable predictability of its potential impacts on TC activity. We find that the winter-summer relationship improves the skill of extended-range seasonal forecasts from as early as an April lead time, particularly for years when wave breaking has played a crucial role in suppressing TC development.


2022 ◽  
Vol 9 ◽  
Author(s):  
Wei Zhang ◽  
Jianyun Gao ◽  
Qiaozhen Lai ◽  
Yanzhen Chi ◽  
Tonghua Su

Several probabilistic forecast methods for heatwave (HW) in extended-range scales over China are constructed using four models (ECMWF, CMA, UKMO, and NCEP) from the Subseasonal-to-Seasonal (S2S) database. The methods include four single-model ensembles (SME; ECMWF, CMA, UKMO, and NCEP), multi-model ensemble (MME), and Bayesian model averaging (BMA). The construction and verification of reforecasts are implemented by a defined heat wave index (HWI) which is not only able to reflect the actual occurrence of heatwaves, but also to facilitate forecast and verification. The performance is measured by traditional verification method at each grid point of the 105°E to 132°E; 20°N to 45°N domain for the July, August, and September (JAS) of 1999–2010. For deterministic evaluations of HWI forecast, BMA shows a better pattern correlation coefficient than SME and MME and comparable equitable threat score (ETS) with ECMWF and MME. The good performance of ECMWF and MME take advantage of setting the percentile thresholds for forecasting HW. For the probabilistic forecast, the Brier score of BMA is comparable (superior) to that of MME and ECMWF at short (long) lead-time. BMA also demonstrates an improvement on the reliability of probabilistic forecast, indicating that BMA method is a useful tool for an extended-range forecast of HW. Meanwhile, in the real-time extended-range probabilistic forecast, the beginning date, end date, and probability of HW event can be predicted by the HWI probabilistic forecast of BMA.


MAUSAM ◽  
2022 ◽  
Vol 64 (1) ◽  
pp. 171-188
Author(s):  
D.R. PATTANAIK ◽  
M. MOHAPATRA ◽  
B. MUKHOPADHYAY ◽  
AJIT TYAGI

o"kZ 2010 esa ekulwuksRrj _rq ds nkSjku nks pØokrh; rwQku fufeZr gq, FksA tSls ‘fxjh’ uked vfr izpaM pØokrh; rwQku ¼oh-,l-lh-,l-½ 19 vDrwcj dks fufeZr gqvk vkSj ;g 22 rkjh[k dks E;kaekj leqnz rV dks ikj dj x;k vkSj nwljk ‘tky’ uked izpaM pØokrh; rwQku ¼,l-lh-,l-½ 2 uoacj dks fufeZr gqvk vkSj ;g psUuS ds mRrjh Hkkx ds lehi mRrjh rfeyukMq & nf{k.kh vka/kz izns’k ds leqnzh rVksa dks 07 uoacj dks ikj dj x;k ftldh otg ls rfeyukMq vkSj nf{k.kh vka/kz izns’k ds leqnz rVh; {ks=ksa esa u dsoy rhoz iou ls cfYd mlls gqbZ Hkkjh o"kkZ ls Hkkjh {kfr gqbZA okLrfod le; foLr`r {ks= iwokZuqeku xR;kRed fHkUurkvksa ds lkIrkfgd vkSlr ds vk/kkj ij nks lIrkg ds fy, rS;kj fd, x, gSa tks- bZ- lh- ,e- MCY;w- ,Q-] ,u- bZ- lh- ih- rFkk nksuksa ds 2 ekWMYl vkSlr ¼2 ,e- ,- oh- bZ-½ ds ;qfXer ekWMy ifj.kke ij vk/kkfjr gSaA lkIrkfgd vkSlr] iou vkSj lkisf{kd Hkzfeyrk ds 5&11 fnuksa ds izpkyukRed iwokZuqeku 14 vDrwcj 2010 ds vkjafHkd fLFkfr ij vk/kkfjr gSa ftlls irk pyk gS fd 18&24 vDrwcj dh vof/k ds nkSjku e/; caxky dh [kkM+h ds Åij fuEu nkc dk pØokrh; ldqZys’ku Fkk tks vfr izpaM pØokrh; rwQku ‘fxjh’ ds leku FkkA ‘tky’ uked pØokr  dh mRifRr dk 2 ,e- ,- oh- bZ- esa vPNh rjg irk yxk fy;k x;k FkkA bldk iwokZuqeku 12&18 fnuksa ds fy, oS/k Fkk vkSj ;g 21 vDrwcj 2010 dh vkjafHkd fLFkfr ij vk/kkfjr FkkA 2 ,e- ,- oh- bZ- iwokZuqeku 1&7 uoacj rd ds fy, oS/k Fkk tks 28 ,oa 21 vDrwcj dh vkjafHkd fLFkfr;ksa ij vk/kkfjr Fkk ¼buds iwokZuqeku dh vof/k Øe’k% 5&11 fnuksa rFkk 12&18 fnuksa dh Fkh½ ftlesa Li"V :i ls n’kkZ;k x;k gS fd rfeyukMq leqnz rV vkSj blls yxs gq, vka/kz izns’k ds {ks= esa izsf{kr dh xbZ folaxfr;ksa ls dkQh vf/kd ?kukRed o"kkZ folaxfr;k¡ ns[kh xbZ gSaA bl izkjafHkd v/;;u esa vkxs crk;k x;k gS fd lkIrkfgd pØokrh; Hkzfeyrk ds  ekWMy iwokZuqekuksa dh vf/kdre folaxfr =qfV yxHkx &0-8 ls &1-0 × 10&5 izfr lSds.M dks fuEu LRkjh; vf“lj.k folaxfr yxHkx &0-8 ls &1-0 × 10&5 izfr lSds.M ds lkFk feyus ij m".kdfVca/kh pØokr cuus dh laHkkouk curh gSA rFkkfi bl flLVe ds pØokr ds :i esa rhozhdj.k gsrq Fkzs’kgksYM oSY;w dh igpku djus ds fy, vkSj vf/kd ekeyksa ds fo’ys"k.k djus dh vko’;drk gSA There were two cyclonic storms formed during the post monsoon season of 2010 viz., “Giri” a very severe cyclonic storm (VSCS) formed on 19th October  and  crossed the Myanmar coast on 22nd and the second system “Jal” a severe cyclonic storm (SCS) formed on 2nd November and  crossed north Tamil Nadu-south Andhra Pradesh coasts, close to north of Chennai on 7th November, which caused lot of damage in Tamil Nadu and south Andhra Pradesh coast associated with not only strong wind but also due to associated heavy rainfall.           The real time extended range forecasts in terms of weekly mean of dynamical variables are prepared for two weeks based on the coupled model outputs from ECMWF, NECP and the 2 models average (2MAVE) of both. The operational forecast for days 5-11 of weekly mean wind and relative vorticity based on 14th October, 2010 initial condition indicates cyclonic circulation at low level over the central Bay of Bengal during the period from 18-24 October associated with the very severe cyclone “Giri”. The genesis of the cyclone “Jal” was very much captured in the 2MAVE forecast valid for 12-18 days forecast based on the initial condition of 21st October, 2010. The 2MAVE forecast valid for 1-7 November based on 28 October and 21 October initial conditions (with forecast period of days 5-11 and days 12-18 respectively) also clearly indicated large positive rainfall anomalies over Tamil Nadu coast and adjoining coastal Andhra Pradesh region like that of observed rainfall anomalies. This preliminary study further indicates that the model forecasts anomaly of weekly cyclonic vorticity maximum of about   2.5´10-5 sec-1 combined with a low level convergence anomaly of about -0.8 to -1.0 ´ 10-5 sec-1 may lead to formation of a tropical cyclone.  However, more number of cases required to be analysed for the proper identification of the threshold values for intensification of the system into a cyclone. 


2021 ◽  
Vol 6 (2 (114)) ◽  
pp. 6-18
Author(s):  
Serhii Semenov ◽  
Liqiang Zhang ◽  
Weiling Cao ◽  
Serhii Bulba ◽  
Vira Babenko ◽  
...  

This paper has determined the relevance of the issue related to improving the accuracy of the results of mathematical modeling of the software security testing process. The fuzzy GERT-modeling methods have been analyzed. The necessity and possibility of improving the accuracy of the results of mathematical formalization of the process of studying software vulnerabilities under the conditions of fuzziness of input and intermediate data have been determined. To this end, based on the mathematical apparatus of fuzzy network modeling, a fuzzy GERT model has been built for investigating software vulnerabilities. A distinctive feature of this model is to take into consideration the probabilistic characteristics of transitions from state to state along with time characteristics. As part of the simulation, the following stages of the study were performed. To schematically describe the procedures for studying software vulnerabilities, a structural model of this process has been constructed. A "reference GERT model" has been developed for investigating software vulnerabilities. The process was described in the form of a standard GERT network. The algorithm of equivalent transformations of the GERT network has been improved, which differs from known ones by considering the capabilities of the extended range of typical structures of parallel branches between neighboring nodes. Analytical expressions are presented to calculate the average time spent in the branches and the probability of successful completion of studies in each node. The calculation of these probabilistic-temporal characteristics has been carried out in accordance with data on the simplified equivalent fuzzy GERT network for the process of investigating software vulnerabilities. Comparative studies were conducted to confirm the accuracy and reliability of the results obtained. The results of the experiment showed that in comparison with the reference model, the fuzziness of the input characteristic of the time of conducting studies of software vulnerabilities was reduced, which made it possible to improve the accuracy of the simulation results.


Sign in / Sign up

Export Citation Format

Share Document