scholarly journals De-novo Assembly of Limnospira fusiformis Using Ultra-Long Reads

2021 ◽  
Vol 12 ◽  
Author(s):  
McKenna Hicks ◽  
Thuy-Khanh Tran-Dao ◽  
Logan Mulroney ◽  
David L. Bernick

The Limnospira genus is a recently established clade that is economically important due to its worldwide use in biotechnology and agriculture. This genus includes organisms that were reclassified from Arthrospira, which are commercially marketed as “Spirulina.” Limnospira are photoautotrophic organisms that are widely used for research in nutrition, medicine, bioremediation, and biomanufacturing. Despite its widespread use, there is no closed genome for the Limnospira genus, and no reference genome for the type strain, Limnospira fusiformis. In this work, the L. fusiformis genome was sequenced using Oxford Nanopore Technologies MinION and assembled using only ultra-long reads (>35 kb). This assembly was polished with Illumina MiSeq reads sourced from an axenic L. fusiformis culture; axenicity was verified via microscopy and rDNA analysis. Ultra-long read sequencing resulted in a 6.42 Mb closed genome assembled as a single contig with no plasmid. Phylogenetic analysis placed L. fusiformis in the Limnospira clade; some Arthrospira were also placed in this clade, suggesting a misclassification of these strains. This work provides a fully closed and accurate reference genome for the economically important type strain, L. fusiformis. We also present a rapid axenicity method to isolate L. fusiformis. These contributions enable future biotechnological development of L. fusiformis by way of genetic engineering.

2018 ◽  
Author(s):  
Haig Djambazian ◽  
Anthony Bayega ◽  
Konstantina T. Tsoumani ◽  
Efthimia Sagri ◽  
Maria-Eleni Gregoriou ◽  
...  

AbstractLong-read sequencing has greatly contributed to the generation of high quality assemblies, albeit at a high cost. It is also not always clear how to combine sequencing platforms. We sequenced the genome of the olive fruit fly (Bactrocera oleae), the most important pest in the olive fruits agribusiness industry, using Illumina short-reads, mate-pairs, 10x Genomics linked-reads, Pacific Biosciences (PacBio), and Oxford Nanopore Technologies (ONT). The 10x linked-reads assembly gave the most contiguous assembly with an N50 of 2.16 Mb. Scaffolding the linked-reads assembly using long-reads from ONT gave a more contiguous assembly with scaffold N50 of 4.59 Mb. We also present the most extensive transcriptome datasets of the olive fly derived from different tissues and stages of development. Finally, we used the Chromosome Quotient method to identify Y-chromosome scaffolds and show that the long-reads based assembly generates very highly contiguous Y-chromosome assembly.JR is a member of the MinION Access Program (MAP) and has received free-of-charge flow cells and sequencing kits from Oxford Nanopore Technologies for other projects. JR has had no other financial support from ONT.AB has received re-imbursement for travel costs associated with attending Nanopore Community meeting 2018, a meeting organized my Oxford Nanopore Technologies.


2018 ◽  
Author(s):  
Kristoffer Sahlin ◽  
Paul Medvedev

AbstractLong-read sequencing of transcripts with PacBio Iso-Seq and Oxford Nanopore Technologies has proven to be central to the study of complex isoform landscapes in many organisms. However, current de novo transcript reconstruction algorithms from long-read data are limited, leaving the potential of these technologies unfulfilled. A common bottleneck is the dearth of scalable and accurate algorithms for clustering long reads according to their gene family of origin. To address this challenge, we develop isONclust, a clustering algorithm that is greedy (in order to scale) and makes use of quality values (in order to handle variable error rates). We test isONclust on three simulated and five biological datasets, across a breadth of organisms, technologies, and read depths. Our results demonstrate that isONclust is a substantial improvement over previous approaches, both in terms of overall accuracy and/or scalability to large datasets. Our tool is available at https://github.com/ksahlin/isONclust.


GigaScience ◽  
2019 ◽  
Vol 8 (7) ◽  
Author(s):  
Chang-Ming Bai ◽  
Lu-Sheng Xin ◽  
Umberto Rosani ◽  
Biao Wu ◽  
Qing-Chen Wang ◽  
...  

Abstract Background The blood clam, Scapharca (Anadara) broughtonii, is an economically and ecologically important marine bivalve of the family Arcidae. Efforts to study their population genetics, breeding, cultivation, and stock enrichment have been somewhat hindered by the lack of a reference genome. Herein, we report the complete genome sequence of S. broughtonii, a first reference genome of the family Arcidae. Findings A total of 75.79 Gb clean data were generated with the Pacific Biosciences and Oxford Nanopore platforms, which represented approximately 86× coverage of the S. broughtonii genome. De novo assembly of these long reads resulted in an 884.5-Mb genome, with a contig N50 of 1.80 Mb and scaffold N50 of 45.00 Mb. Genome Hi-C scaffolding resulted in 19 chromosomes containing 99.35% of bases in the assembled genome. Genome annotation revealed that nearly half of the genome (46.1%) is composed of repeated sequences, while 24,045 protein-coding genes were predicted and 84.7% of them were annotated. Conclusions We report here a chromosomal-level assembly of the S. broughtonii genome based on long-read sequencing and Hi-C scaffolding. The genomic data can serve as a reference for the family Arcidae and will provide a valuable resource for the scientific community and aquaculture sector.


2020 ◽  
Vol 9 (32) ◽  
Author(s):  
Sohaib Sarfraz ◽  
Saïd Oulghazi ◽  
Jérémy Cigna ◽  
Shahbaz Talib Sahi ◽  
Kashif Riaz ◽  
...  

ABSTRACT Pectobacterium punjabense is a newly described species causing blackleg disease in potato plants. Therefore, by the combination of long (Oxford Nanopore Technologies, MinION) and short (Illumina MiSeq) reads, we sequenced the complete genome of P. punjabense SS95T, which contains a circular chromosome of 4.793 Mb with a GC content of 50.7%.


2021 ◽  
Author(s):  
Brian W Strehlow ◽  
Astrid Schuster ◽  
Warren R Francis ◽  
Donald E Canfield

Objectives: These data were collected to generate a novel reference metagenome for the sponge Halichondria panicea and its microbiome for subsequent differential expression analyses. Data description: These data include raw sequences from four separate sequencing runs of the metagenome of a single individual of H. panicea - one Illumina MiSeq (2x300 bp, paired-end) run and three Oxford Nanopore Technologies (ONT) long-read sequencing runs, generating 53.8 and 7.42 Gbp respectively. Comparing assemblies of Illumina, ONT and an Illumina-ONT hybrid revealed the hybrid to be the best assembly, comprising 163 Mbp in 63,555 scaffolds (N50: 3,084). This assembly, however, was still highly fragmented and only contained 52% of core metazoan genes (with 77.9% partial genes), so it was also not complete. However, this sponge is an emerging model species for field and laboratory work, and there is considerable interest in genomic sequencing of this species. Although the resultant assemblies from the data presented here are suboptimal, this data note can inform future studies by providing an estimated genome size and coverage requirements for future sequencing, sharing additional data to potentially improve other suboptimal assemblies of this species, and outlining potential limitations and pitfalls of the combined Illumina and ONT approach to novel genome sequencing.


GigaScience ◽  
2020 ◽  
Vol 9 (9) ◽  
Author(s):  
Gina M Pham ◽  
John P Hamilton ◽  
Joshua C Wood ◽  
Joseph T Burke ◽  
Hainan Zhao ◽  
...  

Abstract Background Worldwide, the cultivated potato, Solanum tuberosum L., is the No. 1 vegetable crop and a critical food security crop. The genome sequence of DM1–3 516 R44, a doubled monoploid clone of S. tuberosum Group Phureja, was published in 2011 using a whole-genome shotgun sequencing approach with short-read sequence data. Current advanced sequencing technologies now permit generation of near-complete, high-quality chromosome-scale genome assemblies at minimal cost. Findings Here, we present an updated version of the DM1–3 516 R44 genome sequence (v6.1) using Oxford Nanopore Technologies long reads coupled with proximity-by-ligation scaffolding (Hi-C), yielding a chromosome-scale assembly. The new (v6.1) assembly represents 741.6 Mb of sequence (87.8%) of the estimated 844 Mb genome, of which 741.5 Mb is non-gapped with 731.2 Mb anchored to the 12 chromosomes. Use of Oxford Nanopore Technologies full-length complementary DNA sequencing enabled annotation of 32,917 high-confidence protein-coding genes encoding 44,851 gene models that had a significantly improved representation of conserved orthologs compared with the previous annotation. The new assembly has improved contiguity with a 595-fold increase in N50 contig size, 99% reduction in the number of contigs, a 44-fold increase in N50 scaffold size, and an LTR Assembly Index score of 13.56, placing it in the category of reference genome quality. The improved assembly also permitted annotation of the centromeres via alignment to sequencing reads derived from CENH3 nucleosomes. Conclusions Access to advanced sequencing technologies and improved software permitted generation of a high-quality, long-read, chromosome-scale assembly and improved annotation dataset for the reference genotype of potato that will facilitate research aimed at improving agronomic traits and understanding genome evolution.


2017 ◽  
Author(s):  
Camille Marchet ◽  
Lolita Lecompte ◽  
Corinne Da Silva ◽  
Corinne Cruaud ◽  
Jean-Marc Aury ◽  
...  

AbstractLong-read sequencing currently provides sequences of several thousand base pairs. This allows to obtain complete transcripts, which offers an un-precedented vision of the cellular transcriptome.However the literature is lacking tools to cluster such data de novo, in particular for Oxford Nanopore Technologies reads, because of the inherent high error rate compared to short reads.Our goal is to process reads from whole transcriptome sequencing data accurately and without a reference genome in order to reliably group reads coming from the same gene. This de novo approach is therefore particularly suitable for non-model species, but can also serve as a useful pre-processing step to improve read mapping. Our contribution is both to propose a new algorithm adapted to clustering of reads by gene and a practical and free access tool that permits to scale the complete processing of eukaryotic transcriptomes.We sequenced a mouse RNA sample using the MinION device, this dataset is used to compare our solution to other algorithms used in the context of biological clustering. We demonstrate its is better-suited for transcriptomics long reads. When a reference is available thus mapping possible, we show that it stands as an alternative method that predicts complementary clusters.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 23-24
Author(s):  
Kimberly M Davenport ◽  
Derek M Bickhart ◽  
Kim Worley ◽  
Shwetha C Murali ◽  
Noelle Cockett ◽  
...  

Abstract Sheep are an important agricultural species used for both food and fiber in the United States and globally. A high-quality reference genome enhances the ability to discover genetic and biological mechanisms influencing important traits, such as meat and wool quality. The rapid advances in genome assembly algorithms and emergence of increasingly long sequence read length provide the opportunity for an improved de novo assembly of the sheep reference genome. Tissue was collected postmortem from an adult Rambouillet ewe selected by USDA-ARS for the Ovine Functional Annotation of Animal Genomes project. Short-read (55x coverage), long-read PacBio (75x coverage), and Hi-C data from this ewe were retrieved from public databases. We generated an additional 50x coverage of Oxford Nanopore data and assembled the combined long-read data with canu v1.9. The assembled contigs were polished with Nanopolish v0.12.5 and scaffolded using Hi-C data with Salsa v2.2. Gaps were filled with PBsuite v15.8.24 and polished with Nanopolish v0.12.5 followed by removal of duplicate contigs with PurgeDups v1.0.1. Chromosomes were oriented by identifying centromeres and telomeres with RepeatMasker v4.1.1, indicating a need to reverse the orientation of chromosome 11 relative to Oar_rambouillet_v1.0. Final polishing was performed with two rounds of a pipeline which consisted of freebayes v1.3.1 to call variants, Merfin to validate them, and BCFtools to generate the consensus fasta. The ARS-UI_Ramb_v2.0 assembly has improved continuity (contig N50 of 43.19 Mb) with a 19-fold and 38-fold decrease in the number of scaffolds compared with Oar_rambouillet_v1.0 and Oar_v4.0. ARS-UI_Ramb_v2.0 has greater per-base accuracy and fewer insertions and deletions identified from mapped RNA sequence than previous assemblies. This significantly improved reference assembly, public at NCBI GenBank under accession number GCA_016772045, will optimize the functional annotation of the sheep genome and facilitate improved mapping accuracy of genetic variant and expression data for traits relevant the sheep industry.


2020 ◽  
Vol 9 (44) ◽  
Author(s):  
Christopher A. Gulvik ◽  
Dhwani Batra ◽  
Lori A. Rowe ◽  
Milli Sheth ◽  
Ben W. Humrighouse ◽  
...  

ABSTRACT Kroppenstedtia eburnea DSM 45196T and Kroppenstedtia pulmonis W9323T are aerobic, Gram-positive, filamentous, chemoorganotrophic thermoactinomycetes. Here, we report on the complete and circular genome assemblies generated using Illumina MiSeq and Oxford Nanopore Technologies MinION reads. Putative gene clusters predicted to be involved in the production of secondary metabolites were also identified.


2020 ◽  
Author(s):  
Xiao Du ◽  
Lili Li ◽  
Fan Liang ◽  
Sanyang Liu ◽  
Wenxin Zhang ◽  
...  

AbstractThe importance of structural variants (SVs) on phenotypes and human diseases is now recognized. Although a variety of SV detection platforms and strategies that vary in sensitivity and specificity have been developed, few benchmarking procedures are available to confidently assess their performances in biological and clinical research. To facilitate the validation and application of those approaches, our work established an Asian reference material comprising identified benchmark regions and high-confidence SV calls. We established a high-confidence SV callset with 8,938 SVs in an EBV immortalized B lymphocyte line, by integrating four alignment-based SV callers [from 109× PacBio continuous long read (CLR), 22× PacBio circular consensus sequencing (CCS) reads, 104× Oxford Nanopore long reads, and 114× optical mapping platform (Bionano)] and one de novo assembly-based SV caller using CCS reads. A total of 544 randomly selected SVs were validated by PCR and Sanger sequencing, proofing the robustness of our SV calls. Combining trio-binning based haplotype assemblies, we established an SV benchmark for identification of false negatives and false positives by constructing the continuous high confident regions (CHCRs), which cover 1.46Gb and 6,882 SVs supported by at least one diploid haplotype assembly. Establishing high-confidence SV calls for a benchmark sample that has been characterized by multiple technologies provides a valuable resource for investigating SVs in human biology, disease, and clinical diagnosis.


Sign in / Sign up

Export Citation Format

Share Document