scholarly journals Sleep, Wake, and Critical Brain States: Corollaries From Brain Dynamics

2018 ◽  
Vol 12 ◽  
Author(s):  
Kartik K. Iyer
Keyword(s):  
2021 ◽  
Vol 42 (7) ◽  
pp. 2181-2200
Author(s):  
Daniela Zöller ◽  
Corrado Sandini ◽  
Marie Schaer ◽  
Stephan Eliez ◽  
Danielle S. Bassett ◽  
...  

NeuroImage ◽  
2021 ◽  
pp. 118551
Author(s):  
J.A. Galadí ◽  
S. Silva Pereira ◽  
Y. Sanz Perl ◽  
M.L. Kringelbach ◽  
I. Gayte ◽  
...  

ASN NEURO ◽  
2018 ◽  
Vol 10 ◽  
pp. 175909141775380 ◽  
Author(s):  
Angela M. Muller ◽  
Naznin Virji-Babul

Sports-related concussion in youth is a major public health issue. Evaluating the diffuse and often subtle changes in structure and function that occur in the brain, particularly in this population, remains a significant challenge. The goal of this pilot study was to evaluate the relationship between the intrinsic dynamics of the brain using resting-state functional magnetic resonance imaging (rs-fMRI) and relate these findings to structural brain correlates from diffusion tensor imaging in a group of adolescents with sports-related concussions ( n = 6) and a group of healthy adolescent athletes ( n = 6). We analyzed rs-fMRI data using a sliding windows approach and related the functional findings to structural brain correlates by applying graph theory analysis to the diffusion tensor imaging data. Within the resting-state condition, we extracted three separate brain states in both groups. Our analysis revealed that the brain dynamics in healthy adolescents was characterized by a dynamic pattern, shifting equally between three brain states; however, in adolescents with concussion, the pattern was more static with a longer time spent in one brain state. Importantly, this lack of dynamic flexibility in the concussed group was associated with increased nodal strength in the left middle frontal gyrus, suggesting reorganization in a region related to attention. This preliminary report shows that both the intrinsic brain dynamics and structural organization are altered in networks related to attention in adolescents with concussion. This first report in adolescents will be used to inform future studies in a larger cohort.


NeuroImage ◽  
2018 ◽  
Vol 169 ◽  
pp. 46-56 ◽  
Author(s):  
Gustavo Deco ◽  
Joana Cabral ◽  
Victor M. Saenger ◽  
Melanie Boly ◽  
Enzo Tagliazucchi ◽  
...  

2017 ◽  
Author(s):  
Selen Atasoy ◽  
Leor Roseman ◽  
Mendel Kaelen ◽  
Morten L. Kringelbach ◽  
Gustavo Deco ◽  
...  

ABSTRACTRecent studies have started to elucidate the effects of lysergic acid diethylamide (LSD) on the human brain but the underlying dynamics are not yet fully understood. Here we used ‘connectome-harmonic decomposition’, a novel method to investigate the dynamical changes in brain states. We found that LSD alters the energy and the power of individual harmonic brain states in a frequency-selective manner. Remarkably, this leads to an expansion of the repertoire of active brain states, suggestive of a general re-organization of brain dynamics given the non-random increase in co-activation across frequencies. Interestingly, the frequency distribution of the active repertoire of brain states under LSD closely follows power-laws indicating a re-organization of the dynamics at the edge of criticality. Beyond the present findings, these methods open up for a better understanding of the complex brain dynamics in health and disease.


2020 ◽  
Author(s):  
Camilo Miguel Signorelli ◽  
Lynn Uhrig ◽  
Morten Kringelbach ◽  
Bechir Jarraya ◽  
Gustavo Deco

AbstractAnesthesia induces a reconfiguration of the repertoire of functional brain states leading to a high function-structure similarity. However, it is unclear how these functional changes lead to loss of consciousness. Here we suggest that the mechanism of conscious access is related to a general dynamical rearrangement of the intrinsic hierarchical organization of the cortex. To measure cortical hierarchy, we applied the Intrinsic Ignition analysis to resting-state fMRI data acquired in awake and anesthetized macaques. Our results reveal the existence of spatial and temporal hierarchical differences of neural activity within the macaque cortex, with a strong modulation by the depth of anesthesia and the employed anesthetic agent. Higher values of Intrinsic Ignition correspond to rich and flexible brain dynamics whereas lower values correspond to poor and rigid, structurally driven brain dynamics. Moreover, spatial and temporal hierarchical dimensions are disrupted in a different manner, involving different hierarchical brain networks. All together suggest that disruption of brain hierarchy is a new signature of consciousness loss.


2017 ◽  
Vol 7 (4) ◽  
pp. 287-299 ◽  
Author(s):  
Jeffrey Jonathan (Joshua) Davis ◽  
Chin-Teng Lin ◽  
Grant Gillett ◽  
Robert Kozma

Abstract Electroencephalograph (EEG) data provide insight into the interconnections and relationships between various cognitive states and their corresponding brain dynamics, by demonstrating dynamic connections between brain regions at different frequency bands. While sensory input tends to stimulate neural activity in different frequency bands, peaceful states of being and self-induced meditation tend to produce activity in the mid-range (Alpha). These studies were conducted with the aim of: (a) testing different equipment in order to assess two (2) different EEG technologies together with their benefits and limitations and (b) having an initial impression of different brain states associated with different experimental modalities and tasks, by analyzing the spatial and temporal power spectrum and applying our movie making methodology to engage in qualitative exploration via the art of encephalography. This study complements our previous study of measuring multichannel EEG brain dynamics using MINDO48 equipment associated with three experimental modalities measured both in the laboratory and the natural environment. Together with Hilbert analysis, we conjecture, the results will provide us with the tools to engage in more complex brain dynamics and mental states, such as Meditation, Mathematical Audio Lectures, Music Induced Meditation, and Mental Arithmetic Exercises. This paper focuses on open eye and closed eye conditions, as well as meditation states in laboratory conditions. We assess similarities and differences between experimental modalities and their associated brain states as well as differences between the different tools for analysis and equipment.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Joan Rué-Queralt ◽  
Angus Stevner ◽  
Enzo Tagliazucchi ◽  
Helmut Laufs ◽  
Morten L. Kringelbach ◽  
...  

AbstractCurrent state-of-the-art functional magnetic resonance imaging (fMRI) offers remarkable imaging quality and resolution, yet, the intrinsic dimensionality of brain dynamics in different states (wakefulness, light and deep sleep) remains unknown. Here we present a method to reveal the low dimensional intrinsic manifold underlying human brain dynamics, which is invariant of the high dimensional spatio-temporal representation of the neuroimaging technology. By applying this intrinsic manifold framework to fMRI data acquired in wakefulness and sleep, we reveal the nonlinear differences between wakefulness and three different sleep stages, and successfully decode these different brain states with a mean accuracy across participants of 96%. Remarkably, a further group analysis shows that the intrinsic manifolds of all participants share a common topology. Overall, our results reveal the intrinsic manifold underlying the spatiotemporal dynamics of brain activity and demonstrate how this manifold enables the decoding of different brain states such as wakefulness and various sleep stages.


2021 ◽  
Author(s):  
J. Rué-Queralt ◽  
A. Stevner ◽  
E. Tagliazucchi ◽  
H. Laufs ◽  
M. L. Kringelbach ◽  
...  

AbstractCurrent state-of-the-art functional magnetic resonance imaging (fMRI) offers remarkable imaging quality and resolution, yet, the intrinsic dimensionality of brain dynamics in different states (wakefulness, light and deep sleep) remains unknown. Here we present a novel method to reveal the low dimensional intrinsic manifold underlying human brain dynamics, which is invariant of the high dimensional spatio-temporal representation of the neuroimaging technology. By applying this novel intrinsic manifold framework to fMRI data acquired in wakefulness and sleep, we reveal the nonlinear differences between wakefulness and three different sleep stages, and successfully decode these different brain states with an average accuracy of 96%. Remarkably, a further group analysis shows that the intrinsic manifolds of all participants share a common topology. Overall, our results reveal the intrinsic manifold underlying the spatiotemporal dynamics of brain activity and demonstrate how this manifold enables the decoding of different brain states such as wakefulness and various sleep stages.


2021 ◽  
Vol 15 ◽  
Author(s):  
Carlos Coronel-Oliveros ◽  
Samy Castro ◽  
Rodrigo Cofré ◽  
Patricio Orio

The structural connectivity of human brain allows the coexistence of segregated and integrated states of activity. Neuromodulatory systems facilitate the transition between these functional states and recent computational studies have shown how an interplay between the noradrenergic and cholinergic systems define these transitions. However, there is still much to be known about the interaction between the structural connectivity and the effect of neuromodulation, and to what extent the connectome facilitates dynamic transitions. In this work, we use a whole brain model, based on the Jasen and Rit equations plus a human structural connectivity matrix, to find out which structural features of the human connectome network define the optimal neuromodulatory effects. We simulated the effect of the noradrenergic system as changes in filter gain, and studied its effects related to the global-, local-, and meso-scale features of the connectome. At the global-scale, we found that the ability of the network of transiting through a variety of dynamical states is disrupted by randomization of the connection weights. By simulating neuromodulation of partial subsets of nodes, we found that transitions between integrated and segregated states are more easily achieved when targeting nodes with greater connection strengths—local feature—or belonging to the rich club—meso-scale feature. Overall, our findings clarify how the network spatial features, at different levels, interact with neuromodulation to facilitate the switching between segregated and integrated brain states and to sustain a richer brain dynamics.


Sign in / Sign up

Export Citation Format

Share Document