spatial features
Recently Published Documents


TOTAL DOCUMENTS

1059
(FIVE YEARS 517)

H-INDEX

33
(FIVE YEARS 10)

2022 ◽  
Vol 14 (2) ◽  
pp. 396
Author(s):  
Yue Shi ◽  
Liangxiu Han ◽  
Anthony Kleerekoper ◽  
Sheng Chang ◽  
Tongle Hu

The accurate and automated diagnosis of potato late blight disease, one of the most destructive potato diseases, is critical for precision agricultural control and management. Recent advances in remote sensing and deep learning offer the opportunity to address this challenge. This study proposes a novel end-to-end deep learning model (CropdocNet) for accurate and automated late blight disease diagnosis from UAV-based hyperspectral imagery. The proposed method considers the potential disease-specific reflectance radiation variance caused by the canopy’s structural diversity and introduces multiple capsule layers to model the part-to-whole relationship between spectral–spatial features and the target classes to represent the rotation invariance of the target classes in the feature space. We evaluate the proposed method with real UAV-based HSI data under controlled and natural field conditions. The effectiveness of the hierarchical features is quantitatively assessed and compared with the existing representative machine learning/deep learning methods on both testing and independent datasets. The experimental results show that the proposed model significantly improves accuracy when considering the hierarchical structure of spectral–spatial features, with average accuracies of 98.09% for the testing dataset and 95.75% for the independent dataset, respectively.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 545
Author(s):  
Bor-Jiunn Hwang ◽  
Hui-Hui Chen ◽  
Chaur-Heh Hsieh ◽  
Deng-Yu Huang

Based on experimental observations, there is a correlation between time and consecutive gaze positions in visual behaviors. Previous studies on gaze point estimation usually use images as the input for model trainings without taking into account the sequence relationship between image data. In addition to the spatial features, the temporal features are considered to improve the accuracy in this paper by using videos instead of images as the input data. To be able to capture spatial and temporal features at the same time, the convolutional neural network (CNN) and long short-term memory (LSTM) network are introduced to build a training model. In this way, CNN is used to extract the spatial features, and LSTM correlates temporal features. This paper presents a CNN Concatenating LSTM network (CCLN) that concatenates spatial and temporal features to improve the performance of gaze estimation in the case of time-series videos as the input training data. In addition, the proposed model can be optimized by exploring the numbers of LSTM layers, the influence of batch normalization (BN) and global average pooling layer (GAP) on CCLN. It is generally believed that larger amounts of training data will lead to better models. To provide data for training and prediction, we propose a method for constructing datasets of video for gaze point estimation. The issues are studied, including the effectiveness of different commonly used general models and the impact of transfer learning. Through exhaustive evaluation, it has been proved that the proposed method achieves a better prediction accuracy than the existing CNN-based methods. Finally, 93.1% of the best model and 92.6% of the general model MobileNet are obtained.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Mengxing Huang ◽  
Shi Liu ◽  
Zhenfeng Li ◽  
Siling Feng ◽  
Di Wu ◽  
...  

A two-stream remote sensing image fusion network (RCAMTFNet) based on the residual channel attention mechanism is proposed by introducing the residual channel attention mechanism (RCAM) in this paper. In the RCAMTFNet, the spatial features of PAN and the spectral features of MS are extracted, respectively, by a two-channel feature extraction layer. Multiresidual connections allow the network to adapt to a deeper network structure without the degradation. The residual channel attention mechanism is introduced to learn the interdependence between channels, and then the correlation features among channels are adapted on the basis of the dependency. In this way, image spatial information and spectral information are extracted exclusively. What is more, pansharpening images are reconstructed across the board. Experiments are conducted on two satellite datasets, GaoFen-2 and WorldView-2. The experimental results show that the proposed algorithm is superior to the algorithms to some existing literature in the comparison of the values of reference evaluation indicators and nonreference evaluation indicators.


Author(s):  
Yuan Liu ◽  
Zhuang Wang ◽  
Shuaifei Huang ◽  
Wenjie Wang ◽  
Dong Ming

Abstract Objective. Supernumerary Robotic Limbs (SRL) are body augmentation robotic devices by adding extra limbs or fingers to the human body different from the traditional wearable robotic devices such as prosthesis and exoskeleton. We proposed a novel MI (Motor imagery)-based BCI paradigm based on the sixth-finger which imagines controlling the extra finger movements. The goal of this work is to investigate the EEG characteristics and the application potential of MI-based BCI systems based on the new imagination paradigm (the sixth finger MI). Approach. 14 subjects participated in the experiment involving the sixth finger MI tasks and rest state. Event-related spectral perturbation (ERSP) was adopted to analyse EEG spatial features and key-channel time-frequency features. Common spatial patterns (CSP) were used for feature extraction and classification was implemented by support vector machine (SVM). A genetic algorithm (GA) was used to select combinations of EEG channels that maximized classification accuracy and verified EEG patterns based on the sixth finger MI. And we conducted a longitudinal 4-week EEG control experiment based on the new paradigm. Main results. ERD (event-related desynchronization) was found in the supplementary motor area (SMA) and primary motor area (M1) with a faint contralateral dominance. Unlike traditional MI based on the human hand, ERD was also found in frontal lobe. GA results showed that the distribution of the optimal 8-channel is similar to EEG topographical distributions, nearing parietal and frontal lobe. And the classification accuracy based on the optimal 8-channel (the highest accuracy of 80% and mean accuracy of 70%) was significantly better than that based on the random 8-channel (p<0.01). Significance. This work provided a new paradigm for MI-based MI system and verified its feasibility, widened the control bandwidth of the BCI system.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 391
Author(s):  
Zhonghan Li ◽  
Yongbo Zhang

The indoor autonomous navigation of unmanned aerial vehicles (UAVs) is the current research hotspot. Unlike the outdoor broad environment, the indoor environment is unknown and complicated. Global Navigation Satellite System (GNSS) signals are easily blocked and reflected because of complex indoor spatial features, which make it impossible to achieve positioning and navigation indoors relying on GNSS. This article proposes a set of indoor corridor environment positioning methods based on the integration of WiFi and IMU. The zone partition-based Weighted K Nearest Neighbors (WKNN) algorithm is used to achieve higher WiFi-based positioning accuracy. On the basis of the Error-State Kalman Filter (ESKF) algorithm, WiFi-based and IMU-based methods are fused together and realize higher positioning accuracy. The probability-based optimization method is used for further accuracy improvement. After data fusion, the positioning accuracy increased by 51.09% compared to the IMU-based algorithm and by 66.16% compared to the WiFi-based algorithm. After optimization, the positioning accuracy increased by 20.9% compared to the ESKF-based data fusion algorithm. All of the above results prove that methods based on WiFi and IMU (low-cost sensors) are very capable of obtaining high indoor positioning accuracy.


Author(s):  
Kinda Al Sayed ◽  
Peter C H. Cheng ◽  
Alan Penn

Abstract This paper presents a preliminary study into the spatial features that can be used to distinguish creativity andefficiency in design layouts, and the distinct pattern of cognitive and metacognitive activity that is associated with creative design. In a design experiment, a group of 12 architects were handed a design brief. Their drawing activity was recorded and they were required to externalize their thoughts during the design process. Both design solutions and verbal comments were analysed and modelled. A separate group of experienced architects used their expert knowledge to assign creativity and efficiency scores to the 12 design solutions. The design solutions were evaluated spatially. Protocol analysis studies including linkography and macroscopic analysis were used to discern distinctive patterns in the cognitive and metacognition activity of designs marked with the highest and least creativity scores. Entropy models of the linkographs and knowledge graphs were further introduced Finally, we assessed how creativity and efficiency correlates to experiment variables, cognitive activity, metacognitive activity, spatial and functional distribution of spaces in the design solutions, and the number and type of design constraints applied through the course of design. Through this investigation, we suggest that expert knowledge can be used to assess creativity and efficiency in designs. Our findings indicate that efficient layouts have distinct spatial features, and that cognitive and metacognitive activity in design that yields a highly creative outcome corresponds to higher frequencies of design moves and higher linkages between design moves.


2022 ◽  
pp. 20-41
Author(s):  
Rubeena Vohra ◽  
Kailash Chandra Tiwari

The goal of this chapter is to demonstrate the classification of natural and man-made objects from multisensory remote sensing data. The spectral and spatial features play an important role in extracting the information of natural and man-made objects. The classification accuracy may be enhanced by fusion technique applied on feature knowledge database. A significantly different approach has been devised using spatial as well as spectral features from multisensory data, and the classified results are enhanced by majority voting fusion technique. The author concludes by presenting extensive discussion at each level and has envisaged the potential use of multisensory data for object-based land cover classification.


2021 ◽  
Vol 119 (1) ◽  
pp. e2108671119
Author(s):  
Darka Labavić ◽  
Claude Loverdo ◽  
Anne-Florence Bitbol

The gut microbiota features important genetic diversity, and the specific spatial features of the gut may shape evolution within this environment. We investigate the fixation probability of neutral bacterial mutants within a minimal model of the gut that includes hydrodynamic flow and resulting gradients of food and bacterial concentrations. We find that this fixation probability is substantially increased, compared with an equivalent well-mixed system, in the regime where the profiles of food and bacterial concentration are strongly spatially dependent. Fixation probability then becomes independent of total population size. We show that our results can be rationalized by introducing an active population, which consists of those bacteria that are actively consuming food and dividing. The active population size yields an effective population size for neutral mutant fixation probability in the gut.


Sign in / Sign up

Export Citation Format

Share Document