scholarly journals Response of Mouse Visual Cortical Neurons to Electric Stimulation of the Retina

2019 ◽  
Vol 13 ◽  
Author(s):  
Sang Baek Ryu ◽  
Paul Werginz ◽  
Shelley I. Fried
1991 ◽  
Vol 66 (1) ◽  
pp. 293-306 ◽  
Author(s):  
L. J. Larson-Prior ◽  
P. S. Ulinski ◽  
N. T. Slater

1. A preparation of turtle (Chrysemys picta and Pseudemys scripta) brain in which the integrity of the intracortical and geniculocortical pathways in visual cortex are maintained in vitro has been used to differentiate the excitatory amino acid (EAA) receptor subtypes involved in geniculocortical and intracortical synapses. 2. Stimulation of the geniculocortical fibers at subcortical loci produces monosynaptic excitatory postsynaptic potentials (EPSPs) in visual cortical neurons. These EPSPs are blocked by the broad-spectrum EAA receptor antagonist kynurenate (1-2 mM) and the non-N-methyl-D-aspartate (NMDA) antagonist 6, 7-dinitroquinoxaline-2,3-dione (DNQX, 10 microM), but not by the NMDA antagonist D,L-2-amino-5-phosphonovalerate (D,L-AP-5, 100 microM). These results indicate that the geniculocortical EPSP is mediated by EAAs that access principally, if not exclusively, EAA receptors of the non-NMDA subtypes. 3. Stimulation of intracortical fibers evokes compound EPSPs that could be resolved into three components differing in latency to peak. The component with the shortest latency was not affected by any of the EAA-receptor antagonists tested. The second component, of intermediate latency, was blocked by kyurenate and DNQX but not by D,L-AP-5. The component of longest latency was blocked by kynurenate and D,L-AP-5, but not by DNQX. These results indicate that the compound intracortical EPSP is comprised of three pharmacologically distinct components that are mediated by an unknown receptor, by quisqualate/kainate, and by NMDA receptors, respectively. 4. Repetitive stimulation of intracortical pathways at 0.33 Hz produces a dramatic potentiation of the late, D,L-AP-5-sensitive component of the intracortical EPSP. 5. These experiments lead to a hypothesis about the subtypes of EAA receptors that are accessed by the geniculocortical and intracortical pathways within visual cortex.


2001 ◽  
Vol 85 (3) ◽  
pp. 1078-1087 ◽  
Author(s):  
Xiaofeng Ma ◽  
Nobuo Suga

Recent findings indicate that the corticofugal system would play an important role in cortical plasticity as well as collicular plasticity. To understand the role of the corticofugal system in plasticity, therefore, we studied the amount and the time course of plasticity in the inferior colliculus (IC) and auditory cortex (AC) evoked by focal electrical stimulation of the AC and also the effect of electrical stimulation of the somatosensory cortex on the plasticity evoked by the stimulation of the AC. In adult big brown bats ( Eptesicus fuscus), we made the following major findings. 1) Electric stimulation of the AC evokes best frequency (BF) shifts, i.e., shifts in frequency-response curves of collicular and cortical neurons. These BF shifts start to occur within 2 min, reach a maximum (or plateau) at 30 min, and then recover ∼180 min after a 30-min-long stimulus session. When the stimulus session is lengthened from 30 to 90 min, the plateau lasts ∼60 min, but BF shifts recover ∼180 min after the session. 2) The electric stimulation of the somatosensory cortex delivered immediately after that of the AC, as in fear conditioning, evokes a dramatic lengthening of the recovery period of the cortical BF shifts but not that of the collicular BF shift. The electric stimulation of the somatosensory cortex delivered before that of the AC, as in backward conditioning, has no effect on the collicular and cortical BF shifts. 3) Electric stimulation of the AC evokes BF shifts not only in the ipsilateral IC and AC but also in the contralateral IC and AC. BF shifts are smaller in amount and shorter in recovery time for contralateral collicular and cortical neurons than for ipsilateral ones. Our findings support the hypothesis that the AC and the corticofugal system have an intrinsic mechanism for reorganization of the IC and AC, that the reorganization is highly specific to a value of an acoustic parameter (frequency), and that the reorganization is augmented by excitation of nonauditory sensory cortex that makes the acoustic stimulus behaviorally relevant to the animal through associative learning.


2003 ◽  
Vol 89 (1) ◽  
pp. 90-103 ◽  
Author(s):  
Xiaofeng Ma ◽  
Nobuo Suga

Auditory conditioning (associative learning) or focal electric stimulation of the primary auditory cortex (AC) evokes reorganization (plasticity) of the cochleotopic (frequency) map of the inferior colliculus (IC) as well as that of the AC. The reorganization results from shifts in the best frequencies (BFs) and frequency-tuning curves of single neurons. Since the importance of the cholinergic basal forebrain for cortical plasticity and the importance of the somatosensory cortex and the corticofugal auditory system for collicular and cortical plasticity have been demonstrated, Gao and Suga proposed a hypothesis that states that the AC and corticofugal system play an important role in evoking auditory collicular and cortical plasticity and that auditory and somatosensory signals from the cerebral cortex to the basal forebrain play an important role in augmenting collicular and cortical plasticity. To test their hypothesis, we studied whether the amount and the duration of plasticity of both collicular and cortical neurons evoked by electric stimulation of the AC or by acoustic stimulation were increased by electric stimulation of the basal forebrain and/or the somatosensory cortex. In adult big brown bats ( Eptesicus fuscus), we made the following major findings. 1) Collicular and cortical plasticity evoked by electric stimulation of the AC is augmented by electric stimulation of the basal forebrain. The amount of augmentation is larger for cortical plasticity than for collicular plasticity. 2) Collicular and cortical plasticity evoked by AC stimulation is augmented by somatosensory cortical stimulation mimicking fear conditioning. The amount of augmentation is larger for cortical plasticity than for collicular plasticity. 3) Collicular and cortical plasticity evoked by both AC and basal forebrain stimulations is further augmented by somatosensory cortical stimulation. 4) A lesion of the basal forebrain tends to reduce collicular and cortical plasticity evoked by AC stimulation. The reduction is small and statistically insignificant for collicular plasticity but significant for cortical plasticity. 5) The lesion of the basal forebrain eliminates the augmentation of collicular and cortical plasticity that otherwise would be evoked by somatosensory cortical stimulation. 6) Collicular and cortical plasticity evoked by repetitive acoustic stimuli is augmented by basal forebrain and/or somatosensory cortical stimulation. However, the lesion of the basal forebrain eliminates the augmentation of collicular and cortical plasticity that otherwise would be evoked by somatosensory cortical stimulation. These findings support the hypothesis proposed by Gao and Suga.


2004 ◽  
Vol 92 (6) ◽  
pp. 3192-3199 ◽  
Author(s):  
Xiaofeng Ma ◽  
Nobuo Suga

Repetitive acoustic stimulation, auditory fear conditioning, and focal electric stimulation of the auditory cortex (AC) each evoke the reorganization of the central auditory system. Our current study of the big brown bat indicates that focal electric stimulation of the AC evokes center-surround reorganization of the frequency map of the AC. In the center, the neuron's best frequencies (BFs), together with their frequency–tuning curves, shift toward the BFs of electrically stimulated cortical neurons (centripetal BF shifts). In the surround, BFs shift away from the stimulated cortical BF (centrifugal BF shifts). Centripetal BF shifts are much larger than centrifugal BF shifts. An antagonist (bicuculline methiodide) of inhibitory synaptic transmitter receptors changes centrifugal BF shifts into centripetal BF shifts, whereas its agonist (muscimol) changes centripetal BF shifts into centrifugal BF shifts. This reorganization of the AC thus depends on a balance between facilitation and inhibition evoked by focal cortical electric stimulation. Unlike neurons in the AC of the big brown bat, neurons in the Doppler-shifted constant-frequency (DSCF) area of the AC of the mustached bat are highly specialized for fine-frequency analysis and show almost exclusively centrifugal BF shifts for focal electric stimulation of the DSCF area. Our current data indicate that in the highly specialized area, lateral inhibition is strong compared with the less-specialized area and that the specialized and nonspecialized areas both share the same inhibitory mechanism for centrifugal BF shifts.


2015 ◽  
Vol 370 (1677) ◽  
pp. 20140206 ◽  
Author(s):  
Nela Cicmil ◽  
Kristine Krug

Vision research has the potential to reveal fundamental mechanisms underlying sensory experience. Causal experimental approaches, such as electrical microstimulation, provide a unique opportunity to test the direct contributions of visual cortical neurons to perception and behaviour. But in spite of their importance, causal methods constitute a minority of the experiments used to investigate the visual cortex to date. We reconsider the function and organization of visual cortex according to results obtained from stimulation techniques, with a special emphasis on electrical stimulation of small groups of cells in awake subjects who can report their visual experience. We compare findings from humans and monkeys, striate and extrastriate cortex, and superficial versus deep cortical layers, and identify a number of revealing gaps in the ‘causal map′ of visual cortex. Integrating results from different methods and species, we provide a critical overview of the ways in which causal approaches have been used to further our understanding of circuitry, plasticity and information integration in visual cortex. Electrical stimulation not only elucidates the contributions of different visual areas to perception, but also contributes to our understanding of neuronal mechanisms underlying memory, attention and decision-making.


Sign in / Sign up

Export Citation Format

Share Document