scholarly journals Turbo Gradient and Spin Echo PROPELLER-Diffusion Weighted Imaging for Orbital Tumors: A Comparative Study With Readout-Segmented Echo-Planar Imaging

2021 ◽  
Vol 15 ◽  
Author(s):  
Qing Fu ◽  
Xiang-chuang Kong ◽  
Ding-Xi Liu ◽  
Kun Zhou ◽  
Yi-hao Guo ◽  
...  

Purpose: To qualitatively and quantitatively compare the image quality and diagnostic performance of turbo gradient and spin echo PROPELLER diffusion-weighted imaging (TGSE-PROPELLER-DWI) vs. readout-segmented echo-planar imaging (rs-EPI) in the evaluation of orbital tumors.Materials and Methods: A total of 43 patients with suspected orbital tumors were enrolled to perform the two DWIs with comparable spatial resolution on 3T. The overall image qualities, geometric distortions, susceptibility artifacts, and lesion conspicuities were scored by using a four-point scale (1, poor; 4, excellent). Quantitative measurements, including contrast-to-noise ratios (CNRs), apparent diffusion coefficients (ADCs), geometric distortion rates (GDRs), and lesion sizes, were calculated and compared. The two ADCs for differentiating malignant from benign orbital tumors were evaluated. Wilcoxon signed-rank test, Kappa statistic, and receiver operating characteristics (ROC) curves were used.Results: TGSE-PROPELLER-DWI performed superior in all subjective scores and quantitative GDR evaluation than rs-EPI (p < 0.001), and excellent interobserver agreement was obtained for Kappa value ranging from 0.876 to 1.000. ADClesion of TGSE-PROPELLER-DWI was significantly higher than those of rs-EPI (p < 0.001). Mean ADC of malignant tumors was significantly lower than that of benign tumors both in two DWIs. However, the AUC for differentiating malignant and benign tumors showed no significant difference in the two DWIs (0.860 vs. 0.854, p = 0.7448). Sensitivity and specificity could achieve 92.86% and 72.73% for TGSE-PROPELLER-DWI with a cutoff value of 1.23 × 10–3 mm2/s, and 85.71% and 81.82% for rs-EPI with a cutoff value of 0.99 × 10–3 mm2/s.Conclusion: Compared with rs-EPI, TGSE-PROPELLER-DWI showed minimized geometric distortion and susceptibility artifacts significantly improved the image quality for orbital tumors and achieved comparable diagnostic performance in differentiating malignant and benign orbital tumors.

2017 ◽  
Vol 58 (12) ◽  
pp. 1457-1467 ◽  
Author(s):  
Xiaoquan Xu ◽  
Yanjun Wang ◽  
Hao Hu ◽  
Guoyi Su ◽  
Hu Liu ◽  
...  

Background Readout-segmented echo-planar imaging (RS-EPI) could improve the imaging quality of diffusion-weighted imaging (DWI) in various organs. However, whether it could improve the imaging quality and diagnostic performance for the patients with orbital tumors is still unknown. Purpose To compare the image quality and diagnostic performance of RS-EPI DWI with that of conventional single-shot EPI (SS-EPI) DWI in patients with orbital tumors. Material and Methods SS-EPI and RS-EPI DW images of 32 patients with pathologically diagnosed orbital tumors were retrospectively analyzed. Qualitative imaging parameters (imaging sharpness, geometric distortion, ghosting artifacts, and overall imaging quality) and quantitative imaging parameters (apparent diffusion coefficient [ADC], signal-to-noise ratio [SNR], contrast, and contrast-to-noise ratio [CNR]) were assessed by two independent radiologists, and compared between SS-EPI and RS-EPI DWI. Receiver operating characteristic curves were used to determine the diagnostic value of ADC in differentiating malignant from benign orbital tumors. Results RS-EPI DW imaging produced less geometric distortion and ghosting artifacts, and better imaging sharpness and overall imaging quality than SS-EPI DWI (for all, P < 0.001). Meanwhile, RS-EPI DWI produced significantly lower SNR ( P < 0.001) and ADC ( P < 0.001), and higher contrast ( P < 0.001) than SS-EPI DWI, while producing no difference in CNR ( P = 0.137). There was no significant difference on the diagnostic performance between SS-EPI and RS-EPI DWI, when using ADC as the differentiating index ( P = 0.529). Conclusion Compared with SS-EPI, RS-EPI DWI provided significantly better imaging quality and comparable diagnostic performance in differentiating malignant from benign orbital tumors.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Qiang Lei ◽  
Qi Wan ◽  
Lishan Liu ◽  
Jianfeng Hu ◽  
Wei Zuo ◽  
...  

Objective. This study is aimed at comparing the image quality and diagnostic performance of mean apparent diffusion coefficient (ADC) and lesion-to-spinal cord signal intensity ratio (LSR) derived from turbo spin-echo diffusion-weighted imaging (TSE-DWI) and echo-planar imaging- (EPI-) DWI in patients with a solitary pulmonary lesion (SPL). Methods. 33 patients with SPL underwent chest imaging using EPI-DWI and TSE-DWI with b = 600  s/mm2 in free breathing. A comparison of the distortion ratio (DR), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) was drawn between the two techniques using a Wilcoxon signed-rank test. The interprotocol reproducibility between quantitative parameters of EPI-DWI and TSE-DWI was evaluated using a Bland-Altman plot. ADCs and LSRs derived from EPI-DWI and TSE-DWI were calculated and compared between malignant and benign groups using the Mann–Whitney test. Results. TSE-DWI had similar SNR and CNR compared with EPI-DWI. DR was significantly lower on TSE-DWI than EPI-DWI. ADC and LSR showed slightly higher values with TSE-DWI, while the Bland-Altman analysis showed unacceptable limits of agreement between the two sequences. ADC and LSR of both DWI techniques differed significantly between lung cancer and benign lesions ( P < 0.05 ). The LSR(EPI-DWI) showed the highest area under the curve ( AUC = 0.818 ), followed by ADC(EPI-DWI) ( AUC = 0.789 ), ADC(TSE-DWI) ( AUC = 0.781 ), and LSR(TSE-DWI) ( AUC = 0.748 ), respectively. Among these parameters, the difference in diagnostic accuracy was not statistically significant. Conclusions. TSE-DWI provides significantly improved image quality in patients with SPL as compared with EPI-DWI. However, there was no difference in diagnostic efficacy between these two techniques, according to ADC and LSR.


2002 ◽  
Vol 15 (4) ◽  
pp. 364-373 ◽  
Author(s):  
Roland Bammer ◽  
Michael Augustin ◽  
Rupert W. Prokesch ◽  
Rudolf Stollberger ◽  
Franz Fazekas

2017 ◽  
Vol 28 (1) ◽  
pp. 316-324 ◽  
Author(s):  
Ryoji Mikayama ◽  
Hidetake Yabuuchi ◽  
Shinjiro Sonoda ◽  
Koji Kobayashi ◽  
Kazuya Nagatomo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document