scholarly journals Spatiotemporal Correlation of Epileptiform Activity and Gene Expression in vitro

2021 ◽  
Vol 14 ◽  
Author(s):  
Sophie Schlabitz ◽  
Laura Monni ◽  
Alienor Ragot ◽  
Matthias Dipper-Wawra ◽  
Julia Onken ◽  
...  

Epileptiform activity alters gene expression in the central nervous system, a phenomenon that has been studied extensively in animal models. Here, we asked whether also in vitro models of seizures are in principle suitable to investigate changes in gene expression due to epileptiform activity and tested this hypothesis mainly in rodent and additionally in some human brain slices. We focused on three genes relevant for seizures and epilepsy: FOS proto-oncogene (c-Fos), inducible cAMP early repressor (Icer) and mammalian target of rapamycin (mTor). Seizure-like events (SLEs) were induced by 4-aminopyridine (4-AP) in rat entorhinal-hippocampal slices and by 4-AP/8 mM potassium in human temporal lobe slices obtained from surgical treatment of epilepsy. SLEs were monitored simultaneously by extracellular field potentials and intrinsic optical signals (IOS) for 1–4 h, mRNA expression was quantified by real time PCR. In rat slices, both duration of SLE exposure and SLE onset region were associated with increased expression of c-Fos and Icer while no such association was shown for mTor expression. Similar to rat slices, c-FOS induction in human tissue was increased in slices with epileptiform activity. Our results indicate that irrespective of limitations imposed by ex vivo conditions, in vitro models represent a suitable tool to investigate gene expression. Our finding is of relevance for the investigation of human tissue that can only be performed ex vivo. Specifically, it presents an important prerequisite for future studies on transcriptome-wide and cell-specific changes in human tissue with the goal to reveal novel candidates involved in the pathophysiology of epilepsy and possibly other CNS pathologies.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Haiyu Liu ◽  
Sai Zhang ◽  
Liang Zhang

Abstract Background Rodent brain slices—particularly hippocampal slices—are widely used in experimental investigations of epileptiform activity. Oxygenated artificial cerebrospinal fluid (ACSF) is used to maintain slices in vitro. Physiological or standard ACSF containing 3–3.5 mM K+, 1–2 mM Mg2+, and 1–3 mM Ca2+ generally does not induce population epileptiform activity, which can be induced by ACSF with high K+ (8–10 mM), low Mg2+, or low Ca2+ alone or in combination. While low-Mg2+ ACSF without intentionally added Mg salt but with contaminating Mg2+ (≤ 50–80 µM) from other salts can induce robust epileptiform activity in slices, it is unclear whether such epileptiform activity can be achieved using ACSF with moderately decreased Mg2+. To explore this issue, we examined the effects of moderately modified (m)ACSF with 0.8 mM Mg2+, 1.3 mM Ca2+, and 5.7 mM K+ on induction of epileptiform discharges in mouse hippocampal slices. Results Hippocampal slices were prepared from young (21–28 days old), middle-aged (13–14 months old), and aged (24–26 months old) C57/BL6 mice. Conventional thin (0.4 mm) and thick (0.6 mm) slices were obtained using a vibratome and pretreated with mACSF at 35–36 °C for 1 h prior to recordings. During perfusion with mACSF at 35–36 °C, spontaneous or self-sustained epileptiform field potentials following high-frequency stimulation were frequently recorded in slices pretreated with mACSF but not in those without the pretreatment. Seizure-like ictal discharges were more common in thick slices than in thin slices. Conclusions Prolonged exposure to mACSF by pretreatment and subsequent perfusion can induce epileptiform field potentials in mouse hippocampal slices.


2019 ◽  
Vol 20 (11) ◽  
pp. 920-933 ◽  
Author(s):  
Lucía Gato-Calvo ◽  
Tamara Hermida-Gómez ◽  
Cristina R. Romero ◽  
Elena F. Burguera ◽  
Francisco J. Blanco

Background: Platelet Rich Plasma (PRP) has recently emerged as a potential treatment for osteoarthritis (OA), but composition heterogeneity hampers comparison among studies, with the result that definite conclusions on its efficacy have not been reached. Objective: 1) To develop a novel methodology to prepare a series of standardized PRP releasates (PRP-Rs) with known absolute platelet concentrations, and 2) To evaluate the influence of this standardization parameter on the anti-inflammatory properties of these PRP-Rs in an in vitro and an ex vivo model of OA. Methods: A series of PRPs was prepared using the absolute platelet concentration as the standardization parameter. Doses of platelets ranged from 0% (platelet poor plasma, PPP) to 1.5·105 platelets/µl. PRPs were then activated with CaCl2 to obtain releasates (PRP-R). Chondrocytes were stimulated with 10% of each PRP-R in serum-free culture medium for 72 h to assess proliferation and viability. Cells were co-stimulated with interleukin (IL)-1β (5 ng/ml) and 10% of each PRP-R for 48 h to determine the effects on gene expression, secretion and intra-cellular content of common markers associated with inflammation, catabolism and oxidative stress in OA. OA cartilage explants were co-stimulated with IL-1β (5 ng/ml) and 10% of either PRP-R with 0.75·105 platelets/µl or PRP-R with 1.5·105 platelets/µl for 21 days to assess matrix inflammatory degradation. Results: Chondrocyte viability was not affected, and proliferation was dose-dependently increased. The gene expression of all pro-inflammatory mediators was significantly and dose-independently reduced, except for that of IL-1β and IL-8. Immunoblotting corroborated this effect for inducible NO synthase (NOS2). Secreted matrix metalloproteinase-13 (MMP-13) was reduced to almost basal levels by the PRP-R from PPP. Increasing platelet dosage led to progressive loss to this anti-catabolic ability. Safranin O and toluidine blue stains supported the beneficial effect of low platelet dosage on cartilage matrix preservation. Conclusion: We have developed a methodology to prepare PRP releasates using the absolute platelet concentration as the standardization parameter. Using this approach, the composition of the resulting PRP derived product is independent of the donor initial basal platelet count, thereby allowing the evaluation of its effects objectively and reproducibly. In our OA models, PRP-Rs showed antiinflammatory, anti-oxidant and anti-catabolic properties. Platelet enrichment could favor chondrocyte proliferation but is not necessary for the above effects and could even be counter-productive.


Function ◽  
2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Nelly Redolfi ◽  
Elisa Greotti ◽  
Giulia Zanetti ◽  
Tino Hochepied ◽  
Cristina Fasolato ◽  
...  

AbstractMitochondria play a key role in cellular calcium (Ca2+) homeostasis. Dysfunction in the organelle Ca2+ handling appears to be involved in several pathological conditions, ranging from neurodegenerative diseases, cardiac failure and malignant transformation. In the past years, several targeted green fluorescent protein (GFP)-based genetically encoded Ca2+ indicators (GECIs) have been developed to study Ca2+ dynamics inside mitochondria of living cells. Surprisingly, while there is a number of transgenic mice expressing different types of cytosolic GECIs, few examples are available expressing mitochondria-localized GECIs, and none of them exhibits adequate spatial resolution. Here we report the generation and characterization of a transgenic mouse line (hereafter called mt-Cam) for the controlled expression of a mitochondria-targeted, Förster resonance energy transfer (FRET)-based Cameleon, 4mtD3cpv. To achieve this goal, we engineered the mouse ROSA26 genomic locus by inserting the optimized sequence of 4mtD3cpv, preceded by a loxP-STOP-loxP sequence. The probe can be readily expressed in a tissue-specific manner upon Cre recombinase-mediated excision, obtainable with a single cross. Upon ubiquitous Cre expression, the Cameleon is specifically localized in the mitochondrial matrix of cells in all the organs and tissues analyzed, from embryos to aged animals. Ca2+ imaging experiments performed in vitro and ex vivo in brain slices confirmed the functionality of the probe in isolated cells and live tissues. This new transgenic mouse line allows the study of mitochondrial Ca2+ dynamics in different tissues with no invasive intervention (such as viral infection or electroporation), potentially allowing simple calibration of the fluorescent signals in terms of mitochondrial Ca2+ concentration ([Ca2+]).


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Federico Tinarelli ◽  
Elena Ivanova ◽  
Ilaria Colombi ◽  
Erica Barini ◽  
Edoardo Balzani ◽  
...  

Abstract Background DNA methylation has emerged as an important epigenetic regulator of brain processes, including circadian rhythms. However, how DNA methylation intervenes between environmental signals, such as light entrainment, and the transcriptional and translational molecular mechanisms of the cellular clock is currently unknown. Here, we studied the after-hours mice, which have a point mutation in the Fbxl3 gene and a lengthened circadian period. Methods In this study, we used a combination of in vivo, ex vivo and in vitro approaches. We measured retinal responses in Afh animals and we have run reduced representation bisulphite sequencing (RRBS), pyrosequencing and gene expression analysis in a variety of brain tissues ex vivo. In vitro, we used primary neuronal cultures combined to micro electrode array (MEA) technology and gene expression. Results We observed functional impairments in mutant neuronal networks, and a reduction in the retinal responses to light-dependent stimuli. We detected abnormalities in the expression of photoreceptive melanopsin (OPN4). Furthermore, we identified alterations in the DNA methylation pathways throughout the retinohypothalamic tract terminals and links between the transcription factor Rev-Erbα and Fbxl3. Conclusions The results of this study, primarily represent a contribution towards an understanding of electrophysiological and molecular phenotypic responses to external stimuli in the Afh model. Moreover, as DNA methylation has recently emerged as a new regulator of neuronal networks with important consequences for circadian behaviour, we discuss the impact of the Afh mutation on the epigenetic landscape of circadian biology.


1996 ◽  
Vol 76 (6) ◽  
pp. 4185-4189 ◽  
Author(s):  
J. C. Hirsch ◽  
O. Quesada ◽  
M. Esclapez ◽  
H. Gozlan ◽  
Y. Ben-Ari ◽  
...  

1. Graded N-methyl-D-aspartate receptor (NMDAR)-dependent epileptiform discharges were recorded from ex vivo hippocampal slices obtained from rats injected a week earlier with an intracerebroventricular dose of kainic acid. Intracellular recordings from pyramidal cells of the CA1 area showed that glutamate NMDAR actively participated in synaptic transmission, even at resting membrane potential. When NMDAR were pharmacologically isolated, graded burst discharges could still be evoked. 2. The oxidizing reagent 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB, 200 microM, 15 min) suppressed the late part of the epileptiform burst that did not recover after wash but could be reinstated by the reducing agent tris (2-carboxyethyl) phosphine (TCEP, 200 microM, 15 min) and again abolished with the NMDA antagonist D-2-amino-5-phosphonovaleric acid (D-APV). 3. Pharmacologically isolated NMDAR-mediated responses were decreased by DTNB (56 +/- 10%, mean +/- SD, n = 6), an effect reversed by TCEP. 4. When only the fast glutamateric synaptic component was blocked, NMDA-dependent excitatory postsynaptic potentials (EPSPs) could be evoked despite the presence of underlying fast and slow inhibitory postsynaptic potentials (IPSPs). DTNB decreased EPSPs to 48 +/- 12% (n = 5) of control. 5. Since a decrease of the NMDAR-mediated response by +/- 50% is sufficient to suppress the late part of the burst, we suggest that epileptiform activity can be controlled by manipulation of the redox sites of NMDAR. Our observations raise the possibility of developing new anticonvulsant drugs that would spare alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-R (AMPAR)-mediated synaptic responses and decrease NMDAR-mediated synaptic transmission without blocking it completely.


2001 ◽  
Vol 86 (5) ◽  
pp. 2445-2460 ◽  
Author(s):  
Rezan Demir ◽  
Lewis B. Haberly ◽  
Meyer B. Jackson

Brain slices serve as useful models for the investigation of epilepsy. However, the preparation of brain slices disrupts circuitry and severs axons, thus complicating efforts to relate epileptiform activity in vitro to seizure activity in vivo. This issue is relevant to studies in transverse slices of the piriform cortex (PC), the preparation of which disrupts extensive rostrocaudal fiber systems. In these slices, epileptiform discharges propagate slowly and in a wavelike manner, whereas such discharges in vivo propagate more rapidly and jump abruptly between layers. The objective of the present study was to identify fiber systems responsible for these differences. PC slices were prepared by cutting along three different nearly orthogonal planes (transverse, parasagittal, and longitudinal), and epileptiform discharges were imaged with a voltage-sensitive fluorescent dye. Interictal-like epileptiform activity was enabled by either a kindling-like induction process or disinhibition with bicuculline. The pattern of discharge onset was very similar in slices cut in different planes. As described previously in transverse PC slices, discharges were initiated in the endopiriform nucleus (En) and adjoining regions in a two-stage process, starting with low-amplitude “plateau activity” at one site and leading to an accelerating depolarization and discharge onset at another nearby site. The similar pattern of onset in slices of various orientations indicates that the local circuitry and neuronal properties in and around the En, rather than long-range fibers, assume dominant roles in the initiation of epileptiform activity. Subtle variations in the onset site indicate that interneurons can fine tune the site of discharge onset. In contrast to the mode of onset, discharge propagation showed striking variations. In longitudinal slices, where rostrocaudal association fibers are best preserved, discharge propagation resembled in vivo seizure activity in the following respects: propagation was as rapid as in vivo and about two to three times faster than in other slices; discharges jumped abruptly between the En and PC; and discharges had large amplitudes in superficial layers of the PC. Cuts in longitudinal slices that partially separated the PC from the En eliminated these unique features. These results help clarify why epileptiform activity differs between in vitro and in vivo experiments and suggest that rostrocaudal pyramidal cell association fibers play a major role in the propagation of discharges in the intact brain. The longitudinal PC slice, which best preserves these fibers, is ideally suited for the study their role.


2019 ◽  
Vol 12 ◽  
Author(s):  
Larissa Kraus ◽  
Florian Hetsch ◽  
Ulf C. Schneider ◽  
Helena Radbruch ◽  
Martin Holtkamp ◽  
...  

2002 ◽  
Vol 87 (1) ◽  
pp. 62-71 ◽  
Author(s):  
Marom Bikson ◽  
Scott C. Baraban ◽  
Dominique M. Durand

Nonsynaptic mechanisms exert a powerful influence on seizure threshold. It is well-established that nonsynaptic epileptiform activity can be induced in hippocampal slices by reducing extracellular Ca2+ concentration. We show here that nonsynaptic epileptiform activity can be readily induced in vitro in normal (2 mM) Ca2+ levels. Those conditions sufficient for nonsynaptic epileptogenesis in the CA1 region were determined by pharmacologically mimicking the effects of Ca2+ reduction in normal Ca2+ levels. Increasing neuronal excitability, by removing extracellular Mg2+ and increasing extracellular K+ (6–15 mM), induced epileptiform activity that was suppressed by postsynaptic receptor antagonists [d-(−)-2-amino-5-phosphonopentanoic acid, picrotoxin, and 6,7-dinitroquinoxaline-2,3-dione] and was therefore synaptic in nature. Similarly, epileptiform activity induced when neuronal excitability was increased in the presence of KCaantagonists (verruculogen, charybdotoxin, norepinephrine, tetraethylammonium salt, and Ba2+) was found to be synaptic in nature. Decreases in osmolarity also failed to induce nonsynaptic epileptiform activity in the CA1 region. However, increasing neuronal excitability (by removing extracellular Mg2+ and increasing extracellular K+) in the presence of Cd2+, a nonselective Ca2+channel antagonist, or veratridine, a persistent sodium conductance enhancer, induced spontaneous nonsynaptic epileptiform activity in vitro. Both novel models were characterized using intracellular and ion-selective electrodes. The results of this study suggest that reducing extracellular Ca2+ facilitates bursting by increasing neuronal excitability and inhibiting Ca2+ influx, which might, in turn, enhance a persistent sodium conductance. Furthermore, these data show that nonsynaptic mechanisms can contribute to epileptiform activity in normal Ca2+ levels.


2019 ◽  
Vol 44 (2) ◽  
pp. 277-285
Author(s):  
Patrycja Sosinska-Zawierucha ◽  
Beata Mackowiak ◽  
Andrzej Breborowicz

Background/Aims: Thromboembolic episodes are a frequent problem in end stage renal failure patients. The pathomechanism of the disorder is complex, including bioincompatibility of renal replacement therapy, endothelial dysfunction, increased blood level of procoagulant factors and uremic toxins. We studied changes in the functional properties of venous endothelial cells (VEC) in the presence of uremic serum and evaluated their possible modulation by N-acetylcysteine (NAC) or sulodexide (SUL). Methods: Serum samples from 12 uremic patients treated with hemodialysis were studied ex vivo on in vitro cultured VEC. In separate experiments, NAC 1 mmol/L or SUL 0.5 LRU/mL were added to uremic serum samples. Both changes in the gene expression and secretory activity of VEC were studied. Results: Uremic serum increased the expression of the following genes: IL6 +97%, p < 0.002; VEGF +28%, p < 0.002; vWF +47%, p < 0.002; PECAM +76%, p < 0.002; ICAM-1 +275%, p < 0.002; t-PA +96%, p < 0.002. Changes in gene expression were reflected by the increased secretory activity of VEC treated with the uremic serum. Exposure of VEC to uremic serum supplemented with NAC or SUL resulted in weaker stimulation of the studied genes’ expression. Also, secretion of the studied solutes, with the exception of ICAM-1, was reduced in the presence of NAC: IL6 –34%, p < 0.01; VEGF –40%, p < 0.005; vWF –25%, p < 0.001; t-PA –47%, p < 0.01, and MMP9 –37%, p < 0.001. SUL reduced the uremic serum-induced secretion of all solutes: IL6 –24%, p < 0.05; ICAM-1 –43%, p < 0.01; VEGF –38%, p < 0.01; vWF –23%, p < 0.01; t-PA –49%, p < 0.01, and MMP9 –25%, p < 0.05. Conclusions: Uremic serum induces prothrombotic changes in VEC, which may cause a predisposition to thrombotic disorders in patients with renal failure. NAC and SUL reduce the effects of the uremic serum in VEC, which suggests their potential therapeutic application in uremic patients.


Sign in / Sign up

Export Citation Format

Share Document