scholarly journals Enhanced Healthspan in Caenorhabditis elegans Treated With Extracts From the Traditional Chinese Medicine Plants Cuscuta chinensis Lam. and Eucommia ulmoides Oliv.

2021 ◽  
Vol 12 ◽  
Author(s):  
Shimaa M. A. Sayed ◽  
Karsten Siems ◽  
Christian Schmitz-Linneweber ◽  
Walter Luyten ◽  
Nadine Saul

To uncover potential anti-aging capacities of Traditional Chinese Medicine (TCM), the nematode Caenorhabditis elegans was used to investigate the effects of Eucommia ulmoides and Cuscuta chinensis extracts, selected by screening seven TCM extracts, on different healthspan parameters. Nematodes exposed to E. ulmoides and C. chinensis extracts, starting at the young adult stage, exhibited prolonged lifespan and increased survival after heat stress as well as upon exposure to the pathogenic bacterium Photorhabdus luminescens, whereby the survival benefits were monitored after stress initiation at different adult stages. However, only C. chinensis had the ability to enhance physical fitness: the swimming behavior and the pharyngeal pumping rate of C. elegans were improved at day 7 and especially at day 12 of adulthood. Finally, monitoring the red fluorescence of aged worms revealed that only C. chinensis extracts caused suppression of intestinal autofluorescence, a known marker of aging. The results underline the different modes of action of the tested plants extracts. E. ulmoides improved specifically the physiological fitness by increasing the survival probability of C. elegans after stress, while C. chinensis seems to be an overall healthspan enhancer, reflected in the suppressed autofluorescence, with beneficial effects on physical as well as physiological fitness. The C. chinensis effects may be hormetic: this is supported by increased gene expression of hsp-16.1 and by trend, also of hsp-12.6.

2018 ◽  
Vol 11 (2) ◽  
pp. 759-767 ◽  
Author(s):  
A. O. Zeltukhin ◽  
G. V. Ilyinskaya ◽  
A. V. Budanov ◽  
P. M. Chumakov

In mammals a small family of genes called Sestrins play important roles in the maintenance of metabolic and redox homeostasis, suggesting that the genes may positively affect the lifespan and counteract the age-related functional decline. The nematode genome contains a single cSesn gene that makes the Caenorhabditis elegans an excellent model for studying functions of the sestrin family. We describe phenotypic differences of worms that have compromised expression of cSesn gene. By comparing three different cSesn-deficient modes with the wild-type C. elegans strain we show that the abrogation of cSesn expression results in an increased body size, an extended period of body growth, a reduces brood size and number of offspring per a single worm, an accelerated decline in muscular functions revealed as a rapid decrease in the pharyngeal pumping rate and in the overall locomotory activity. The results are consistent with the potential roles of cSesn in counteracting the process of aging in C. elegans.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Fanhui Meng ◽  
Jun Li ◽  
Yanqiu Rao ◽  
Wenjun Wang ◽  
Yan Fu

Gengnianchun (GNC), a traditional Chinese medicine (TCM), is believed to have beneficial effects on ageing-related diseases, such as antioxidant properties and effects against Aβ-induced toxicity. We previously found that GNC extended the lifespan of Caenorhabditis elegans. However, the mechanism underlying this effect was unclear. In this study, we further explored the mechanisms of GNC using a C. elegans model. GNC significantly increased the lifespan of C. elegans and enhanced oxidative and thermal stress resistance. Moreover, chemotaxis increased after GNC treatment. RNA-seq analysis showed that GNC regulated genes associated with longevity. We also conducted lifespan assays with a series of worm mutants. The results showed that GNC significantly extended the lifespan of several mutant strains, including eat-2 (ad465), rsks-1 (ok1255), and glp-1 (e2144), suggesting that the prolongevity effect of GNC is independent of the function of these genes. However, GNC failed to extend the lifespan of daf-2 (e1370), age-1 (hx546), and daf-16 (mu86) mutant strains. Our findings suggest that GNC extends the lifespan of C. elegans via the insulin/IGF-1 signalling pathway and may be a potential antiageing agent.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Fanhui Meng ◽  
Jun Li ◽  
Wenjun Wang ◽  
Yan Fu

Objective. Gengnianchun (GNC), a traditional Chinese medicine (TCM), is primarily used to improve declining functions related to aging. In this study, we investigated its prolongevity and stress resistance properties and explored the associated regulatory mechanism using a Caenorhabditis elegans model. Methods. Wild-type C. elegans N2 was used for lifespan analysis and oxidative stress resistance assays. Transgenic animals were used to investigate pathways associated with antioxidative stress activity. The effects of GNC on levels of reactive oxygen species (ROS) and expression of specific genes were examined. Results. GNC-treated wild-type worms showed an increase in survival time under both normal and oxidative stress conditions. GNC decreased intracellular ROS levels by 67.95%. GNC significantly enhanced the oxidative stress resistance of several mutant strains, suggesting that the protective effect of GNC is independent of the function of these genes. However, the oxidative stress resistance effect of GNC was absent in worms with daf-16 mutation. We also found upregulation of daf-16 downstream targets including sod-3 and mtl-1. Conclusions. Our findings suggest that GNC extends the lifespan of C. elegans and enhances its resistance to oxidative stress via a daf-16/FOXO-dependent pathway. This study also provides a feasible method for screening the biological mechanisms of TCMs.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Fujie Yan ◽  
Yushu Chen ◽  
Ramila Azat ◽  
Xiaodong Zheng

Mulberry anthocyanins possess many pharmacological effects including liver protection, anti-inflammation, and anticancer. The aim of this study was to evaluate whether mulberry anthocyanin extract (MAE) exerts beneficial effects against oxidative stress damage in HepG2 cells and Caenorhabditis elegans. In vitro, MAE prevented cytotoxicity, increased glucose consumption and uptake, and eliminated excessive intracellular free radicals in H2O2-induced cells. Moreover, MAE pretreatment maintained Nrf2, HO-1, and p38 MAPK stimulation and abolished upregulation of p-JNK, FOXO1, and PGC-1α that were involved in oxidative stress and insulin signalling modulation. In vivo, extended lifespan was observed in C. elegans damaged by paraquat in the presence of MAE, while these beneficial effects were disappeared in pmk-1 and daf-16 mutants. PMK-1 and SKN-1 were activated after exposure to paraquat and MAE suppressed PMK-1 activation but enhanced SKN-1 stimulation. Our findings suggested that MAE recovered redox status in HepG2 cells and C. elegans that suffered from oxidative stress, which might be by targeting MAPKs and Nrf2.


2016 ◽  
Author(s):  
Monika Scholz ◽  
Dylan J. Lynch ◽  
Kyung Suk Lee ◽  
Erel Levine ◽  
David Biron

We describe a scalable automated method for measuring the pharyngeal pumping of Caenorhabditis elegans in controlled environments. Our approach enables unbiased measurements for prolonged periods, a high throughput, and measurements in controlled yet dynamically changing feeding environments. The automated analysis compares well with scoring pumping by visual inspection, a common practice in the field. In addition, we observed overall low rates of pharyngeal pumping and long correlation times when food availability was oscillated.


2020 ◽  
Author(s):  
Xia Li ◽  
Thomas L. Ingram ◽  
Ying Wang ◽  
Kamila Derecka ◽  
Nathan Courtier ◽  
...  

AbstractAgeing, the decline of biological functions over time, is inherent to eukaryotes. Female honeybees attain a long-lived queen phenotype upon continuous consumption of royal jelly, whereas restricted supply of this nutritional substance promotes the development of worker bees, which are short-lived. An abundant protein found within royal jelly is major royal jelly protein 1 (MRJP1), also known as ‘Royalactin’. Health- and lifespan promoting effects have been attributed to Royalactin in species from diverse animal taxa, suggesting it acts on phylogenetically conserved physiological processes. Here, we explore the effects of feeding the nematode Caenorhabditis elegans with Escherichia coli that express a recombinant form of Royalactin (RArec). We confirm that consumption of RArec increases body size, improves locomotion and extends lifespan. We discover a link between Royalactin and mitochondria, organelles which play a key part in the ageing process: both spare respiratory capacity and morphology indicate improved mitochondrial function in RArec fed C. elegans. These results demonstrate the feasibility of using recombinant Royalactin to gain further insight into processes of healthy ageing in many species.RArec production allows insight into potential beneficial effects across species.


2012 ◽  
Vol 80 (7) ◽  
pp. 2500-2508 ◽  
Author(s):  
Younghoon Kim ◽  
Eleftherios Mylonakis

ABSTRACTAlthough the immune response ofCaenorhabditis elegansto microbial infections is well established, very little is known about the effects of health-promoting probiotic bacteria on evolutionarily conservedC. eleganshost responses. We found that the probiotic Gram-positive bacteriumLactobacillus acidophilusNCFM is not harmful toC. elegansand thatL. acidophilusNCFM is unable to colonize theC. elegansintestine. Conditioning withL. acidophilusNCFM significantly decreased the burden of a subsequentEnterococcus faecalisinfection in the nematode intestine and prolonged the survival of nematodes exposed to pathogenic strains ofE. faecalisandStaphylococcus aureus, including multidrug-resistant (MDR) isolates. Preexposure of nematodes toBacillus subtilisdid not provide any beneficial effects. Importantly,L. acidophilusNCFM activates key immune signaling pathways involved inC. elegansdefenses against Gram-positive bacteria, including the p38 mitogen-activated protein kinase pathway (via TIR-1 and PMK-1) and the β-catenin signaling pathway (via BAR-1). Interestingly, conditioning withL. acidophilusNCFM had a minimal effect on Gram-negative infection withPseudomonas aeruginosaorSalmonella entericaserovar Typhimurium and had no or a negative effect on defense genes associated with Gram-negative pathogens or general stress. In conclusion, we describe a new system for the study of probiotic immune agents and our findings demonstrate that probiotic conditioning withL. acidophilusNCFM modulates specificC. elegansimmunity traits.


2019 ◽  
Vol 2 (2) ◽  
pp. 18-24
Author(s):  
Suhua Huang ◽  
Mingxia Lin ◽  
Xiaowei Pan ◽  
Qiwen Tan ◽  
Kai-Leng Tan

Stroke, also known as cerebral ischemia, is a common neurological disease. The therapeutic potential of MLC901 (NeuroAiD II™) has been reported in clinical trials on traumatic brain injury as well as in animal and cell models. MLC901 reduced the infarction size, ischemia-induced neurological deficits and pro-inflammatory infiltration of phagocyte. It also inhibited the ischemia-induced expression of pro-inflammatory mediators and Prx6, TLR4 signalling, and phosphorylation of NFκB. We found that the beneficial effects of MLC901 are in coherent with studies performed on the individual active ingredient. MLC901 may develop its efficacy through a synergistic effect via nine herbal extracts. MLC901 is a multifaceted traditional Chinese medicine. A cocktail of herbs provides a broader spectrum of targets. This may surpass single-target drug treatment in terms of side effect and therapeutic efficacy. MLC901 leads to various potential research directions on the development or improvement of a feasible, effective and promising herbal formulation for treating stroke patients.


Sign in / Sign up

Export Citation Format

Share Document