scholarly journals Cooling Between Exercise Bouts and Post-exercise With the Fan Cooling Jacket on Thermal Strain in Hot-Humid Environments

2021 ◽  
Vol 12 ◽  
Author(s):  
Hidenori Otani ◽  
Makoto Fukuda ◽  
Takehiro Tagawa

This study investigated the effects of cooling between exercise bouts and post-exercise with a commercially available fan cooling jacket on thermal and perceptual responses during and following exercise in hot-humid environments. Ten male athletes completed two 30 min cycling bouts at a constant workload (1.4 watts⋅kg–1 of body mass) with a 5 min recovery period in between. Exercise was followed by a 10 min recovery period. In an environmental chamber (33°C, 65% relative humidity), participants performed two trials with (FCJ) or without (CON) the fan cooling jacket on a T-shirt during the 5 min inter-exercise and 10 min post-exercise recovery periods. Mean, chest and upper arm skin temperatures, and thermal sensation and comfort were lower in FCJ than CON trial during and following exercise (P < 0.05). Thigh and calf skin temperatures, infrared tympanic temperature and heart rate were lower in FCJ than CON trial during the experimental trials (P < 0.05). The rates of fall in mean, chest and upper arm skin temperatures, infrared tympanic temperature and thermal sensation and comfort were faster in FCJ than CON trial during both recovery periods (P < 0.05). There were faster rates of fall in thigh and calf skin temperatures and heart rate in FCJ than CON trial during the post-exercise recovery period (P < 0.05). No difference was observed between trials in the rating of perceived exertion (P > 0.05). This study indicates that cooling between exercise bouts and post-exercise with the fan cooling jacket would effectively mitigate thermal strain and perception/discomfort during and following exercise in hot-humid environments. This garment would reduce whole-body skin temperature quickly while promoting falls in lower-body as well as upper-body skin temperatures.

2020 ◽  
Vol 26 ◽  
Author(s):  
Su-Fen Liao ◽  
Mallikarjuna Korivi ◽  
Jung-Piao Taso ◽  
Chun-Ching Huang ◽  
Chia-Chen Chang ◽  
...  

Background: Capsinoids (CSN), the novel non-pungent capsaicin analogs have been reported to promote metabolic health and exercise tolerance. However, the effect of CSN on fat oxidation and changes in skeletal muscle glycogen levels during post-exercise recovery has not been investigated in humans. Purpose: We examined the effect of CSN supplementation on energy reliance, glycogen resynthesis and molecular proteins in the skeletal muscle of young adults during post-exercise recovery. Methods: In this crossover-designed study, nine healthy adult male volunteers (aged 21.4±0.2 years, BMI 21.9±1.3 kg/m2 ) completed a 60-min cycling exercise at 70% VO2max. Participants consumed either CSN (12 mg, single dosage) or placebo capsules with a high-carbohydrate meal (2 g carb/kg bodyweight) immediately after exercise. Biopsied muscle samples (vastus lateralis), blood and gaseous samples were obtained during 3h post-exercise recovery period. Results: We found that oral CSN supplementation right after exercise significantly altered the energy reliance on fat oxidation during recovery. This was evidenced by lower respiratory exchange ratio (RER) and higher fat oxidation rate in CSN trial. Despite, acute CSN dosage does not contribute to enhance the glycogen replenishment in skeletal muscle during 3h recovery. We identified no significant differences in postprandial glucose and insulin area under the curve in both trials. Western blot data showed increased muscle GLUT4 expression, but no significant response of p-Akt/Akt ratio with CSN during post-exercise recovery. Conclusion: Our findings conclude that acute CSN intake could change energy reliance on fat oxidation, but unable to enhance muscle glycogen resynthesis during post-exercise recovery. Thus, ergogenic properties of CSN in relevance to muscle glycogen restoration following exercise needs to be further investigated in young adults.


2013 ◽  
Vol 9 (2) ◽  
pp. 103-108
Author(s):  
R.J. Bloomer ◽  
T.M. Farney

Intensity of exercise can influence substrate utilization, with increasing intensity resulting in lower rates of fat oxidation and the reliance on carbohydrate as the preferred fuel. Fat oxidation (or more specifically, mobilization) can be assessed via the measurement of circulating glycerol, with most prior research focusing on aerobic exercise and measurements obtained during the actual exercise bout. The present study determined the degree of fat oxidation/mobilization by measuring plasma glyctierol concentrations during the one hour post-exercise recovery period following three difference exercise bouts. On four different days, exercise trained men (n=12; 23.7±1.1 years) either rested quietly or performed aerobic cycle exercise (60 min at 70% heart rate reserve), 60 s cycle sprints at 100% max wattage obtained during graded exercise testing (GXT) - a total of five, or 15 s cycle sprints at 200% max wattage obtained during GXT - a total of 10. Blood was collected before and at 1, 30 and 60 min post-exercise. Haematocrit and haemoglobin were measured to correct for changes in plasma volume. Glycerol was analysed in plasma and the area under the curve was calculated. Glycerol increased across time (P<0.0001) from pre-exercise (8.4±0.3 μg/dl) to 1 min (13.1±0.7 μg/dl), 30 min (11.3±0.6 μg/dl) and 60 min (9.1±0.5 μg/dl) post-exercise, with 1 min and 30 min post-exercise greater than pre-exercise and 60 min post-exercise (P<0.05). Area under the curve was greater (P=0.0004) for aerobic exercise (24.7±2.0 μg/dl/h), 60 second sprints (23.4±1.9 μg/dl/h) and 15 sec sprints (24.4±1.5 μg/dl/h), as compared to rest (15.3±0.8 μg/dl/h), with no differences noted between exercise bouts (P≯0.05). All exercise bouts increase circulating glycerol, with no differences noted between bouts. Although previous data indicate that low intensity aerobic exercise results in greater fat oxidation than high intensity exercise (when assessed during the actual exercise session), our findings suggest that high intensity exercise may result in similar fat oxidation/mobilization as compared to aerobic exercise during the acute post-exercise period.


2021 ◽  
Vol 12 ◽  
Author(s):  
Keigo Tomoo ◽  
Tadashi Suga ◽  
Kento Dora ◽  
Takeshi Sugimoto ◽  
Ernest Mok ◽  
...  

The length of rest interval between sets (i.e., inter-set rest interval) is an important variable for resistance exercise program. However, the impact of the inter-set rest interval on improvements in cognitive function following resistance exercise remains unknown. In this study, we compared the effect of short rest interval (SRI) vs. long rest interval (LRI) protocols on post-exercise cognitive inhibitory control (IC) improvements induced by low-intensity resistance exercise. Twenty healthy, young males completed both SRI and LRI sessions in a crossover design. The bilateral knee extensor low-intensity resistance exercise was programed for six sets with 10 repetitions per set using 40% of one-repetition maximum. The inter-set rest interval lengths for SRI and LRI protocols were set for 1 and 3min, respectively. The color-word Stroop task (CWST) was administrated at six time points: baseline, pre-exercise, immediate post-exercise, and every 10min during the 30-min post-exercise recovery period. The levels of blood lactate, which may be an important determinant for improving IC, throughout the 30-min post-exercise recovery period were significantly higher following SRI protocol than following LRI protocol (p=0.002 for interaction effect). In line with this result, large-sized decreases in the reverse-Stroop interference score, which represent improved IC, were observed immediately after SRI protocol (d=0.94 and 0.82, respectively, vs. baseline and pre-exercise) as opposed to the moderate-sized decreases immediately after LRI protocol (d=0.62 and 0.66, respectively, vs. baseline and pre-exercise). Moreover, significant decreases in the reverse-Stroop interference score were observed from 10 to 30min after SRI protocol (all ps&lt;0.05 vs. baseline and/or pre-exercise), whereas no such decrease was observed after LRI protocol. Furthermore, the degree of decreases in the reverse-Stroop interference score throughout the 30-min post-exercise recovery period was significantly greater in SRI protocol than in LRI protocol (p=0.046 for interaction effect). We suggest that the SRI protocol is more useful in improving post-exercise IC, potentially via greater circulating lactate levels, compared to the LRI protocol. Therefore, the inter-set rest interval length may be an important variable for determining the degree of cognitive function improvements following resistance exercise in healthy young males.


2018 ◽  
Vol 9 (4) ◽  
pp. 23-30
Author(s):  
Rajalingamgari Venkata Mallikarjuna Vara Prasad ◽  
Meenakshi Sinha ◽  
Jayshri Ghate ◽  
Ramanjan Sinha

Background: Several studies have documented high incidence of cardiovascular and metabolic disorders in obese individuals. However, scant and contradictory reports are available in this context for the preobese people, especially in young adults.Aims and Objectives: Therefore, present study was conducted to assess the effect of high BMI (between 24-30) on the time & frequency domain measures of HRV in normal healthy adult male subjects during resting and post exercise recovery period.Materials and Methods: Healthy young male individuals with no history of any disease were selected and divided in two groups (n=15 in each) on the basis of their BMI: (i) control (BMI 19-24) & (ii) preobese (BMI 24-30). 15-20 mins of ECG recording was done in the resting state and then till 30 mins after Harvard Step Test. Comparison between groups was done using 2-tailed Mann-Whitney U-nonparametric test. Spearman’s Correlation test was used to assess the correlation between BMI and HRV parameters for each group.Results: During resting state, both groups had similar HRV/min. However, control subject had higher parasympathetic tone (high RMSSD, pNN50 & HF) and low sympathetic tone (low LF & LF/HF) as compared to preobese individuals. In the post exercise recovery period of control BMI individuals, all the indices of sympathetic measures increased and parasympathetic measures decreased significantly. However, no such changes were observed in preobese group, except significant decrease in the HRV/min.Conclusions: The blunted autonomic response in the post exercise recovery clearly indicates towards a potential risk of cardiovascular compromise in preobese individuals.Asian Journal of Medical Sciences Vol.9(4) 2018 23-30


2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Kento Dora ◽  
Tadashi Suga ◽  
Keigo Tomoo ◽  
Takeshi Sugimoto ◽  
Ernest Mok ◽  
...  

AbstractThis study compared the effects of low-intensity resistance exercise with slow movement and tonic force generation (ST-LRE) and high-intensity resistance exercise (HRE) on post-exercise improvements in cognitive inhibitory control (IC). Sixteen young males completed ST-LRE and HRE sessions in a crossover design. Bilateral knee extensor ST-LRE and HRE (8 repetitions/set, 6 sets) were performed with 50% of one-repetition maximum with slow contractile speed and 80% of one-repetition maximum with normal contractile speed, respectively. The IC was assessed using the color–word Stroop task at six time points: baseline, pre-exercise, immediate post-exercise, and every 10 min during the 30-min post-exercise recovery period. The blood lactate response throughout the experimental session did not differ between ST-LRE and HRE (condition × time interaction P = 0.396: e.g., mean ± standard error of the mean; 8.1 ± 0.5 vs. 8.1 ± 0.5 mM, respectively, immediately after exercise, P = 0.983, d = 0.00). Large-sized decreases in the reverse-Stroop interference scores, which represent improved IC, compared to those before exercise (i.e., baseline and pre-exercise) were observed throughout the 30 min post-exercise recovery period for both ST-LRE and HRE (decreasing rate ≥ 38.8 and 41.4%, respectively, all ds ≥ 0.95). The degree of post-exercise IC improvements was similar between the two protocols (condition × time interaction P = 0.998). These findings suggest that despite the application of a lower exercise load, ST-LRE improves post-exercise IC similarly to HRE, which may be due to the equivalent blood lactate response between the two protocols, in healthy young adults.


2007 ◽  
Vol 39 (Supplement) ◽  
pp. S290
Author(s):  
Wen-Chih Lee ◽  
Wei-Shiang Lin ◽  
Mei-Chih Chen ◽  
Jung-Shi Wang ◽  
Kuo-Lung Ho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document