scholarly journals Chitosan Coating Enriched With Ruta graveolens L. Essential Oil Reduces Postharvest Anthracnose of Papaya (Carica papaya L.) and Modulates Defense-Related Gene Expression

2021 ◽  
Vol 12 ◽  
Author(s):  
Lucia Landi ◽  
Yeimmy Peralta-Ruiz ◽  
Clemencia Chaves-López ◽  
Gianfranco Romanazzi

Anthracnose of papaya (Carica papaya L.) caused by the fungus Colletotrichum spp. is one of the most economically important postharvest diseases. Coating with chitosan (CS) and Ruta graveolens essential oil (REO) might represent a novel eco-friendly method to prevent postharvest anthracnose infection. These compounds show both antimicrobial and eliciting activities, although the molecular mechanisms in papaya have not been investigated to date. In this study, the effectiveness of CS and REO alone and combined (CS-REO) on postharvest anthracnose of papaya fruit during storage were investigated, along with the expression of selected genes involved in plant defense mechanisms. Anthracnose incidence was reduced with CS, REO, and CS-REO emulsions after 9 days storage at 25°C, by 8, 21, and 37%, respectively, with disease severity reduced by 22, 29, and 44%, respectively. Thus, McKinney’s decay index was reduced by 22, 30, and 44%, respectively. A protocol based on reverse transcription quantitative real-time PCR (RT-qPCR) was validated for 17 papaya target genes linked to signaling pathways that regulate plant defense, pathogenesis-related protein, cell wall-degrading enzymes, oxidative stress, abiotic stress, and the phenylpropanoid pathway. CS induced gene upregulation mainly at 6 h posttreatment (hpt) and 48 hpt, while REO induced the highest upregulation at 0.5 hpt, which then decreased over time. Furthermore, CS-REO treatment delayed gene upregulation by REO alone, from 0.5 to 6 hpt, and kept that longer over time. This study suggests that CS stabilizes the volatile and/or hydrophobic substances of highly reactive essential oils. The additive effects of CS and REO were able to reduce postharvest decay and affect gene expression in papaya fruit.

2020 ◽  
Vol 31 (4) ◽  
pp. 716-730 ◽  
Author(s):  
Marc Johnsen ◽  
Torsten Kubacki ◽  
Assa Yeroslaviz ◽  
Martin Richard Späth ◽  
Jannis Mörsdorf ◽  
...  

BackgroundAlthough AKI lacks effective therapeutic approaches, preventive strategies using preconditioning protocols, including caloric restriction and hypoxic preconditioning, have been shown to prevent injury in animal models. A better understanding of the molecular mechanisms that underlie the enhanced resistance to AKI conferred by such approaches is needed to facilitate clinical use. We hypothesized that these preconditioning strategies use similar pathways to augment cellular stress resistance.MethodsTo identify genes and pathways shared by caloric restriction and hypoxic preconditioning, we used RNA-sequencing transcriptome profiling to compare the transcriptional response with both modes of preconditioning in mice before and after renal ischemia-reperfusion injury.ResultsThe gene expression signatures induced by both preconditioning strategies involve distinct common genes and pathways that overlap significantly with the transcriptional changes observed after ischemia-reperfusion injury. These changes primarily affect oxidation-reduction processes and have a major effect on mitochondrial processes. We found that 16 of the genes differentially regulated by both modes of preconditioning were strongly correlated with clinical outcome; most of these genes had not previously been directly linked to AKI.ConclusionsThis comparative analysis of the gene expression signatures in preconditioning strategies shows overlapping patterns in caloric restriction and hypoxic preconditioning, pointing toward common molecular mechanisms. Our analysis identified a limited set of target genes not previously known to be associated with AKI; further study of their potential to provide the basis for novel preventive strategies is warranted. To allow for optimal interactive usability of the data by the kidney research community, we provide an online interface for user-defined interrogation of the gene expression datasets (http://shiny.cecad.uni-koeln.de:3838/IRaP/).


2020 ◽  
Author(s):  
Connor Rogerson ◽  
Samuel Ogden ◽  
Edward Britton ◽  
Yeng Ang ◽  
Andrew D. Sharrocks ◽  
...  

AbstractOesophageal adenocarcinoma (OAC) is one of the most common causes of cancer deaths and yet compared to other common cancers, we know relatively little about the underlying molecular mechanisms. Barrett’s oesophagus (BO) is the only known precancerous precursor to OAC, but our understanding about the specific events leading to OAC development is limited. Here, we have integrated gene expression and chromatin accessibility profiles of human biopsies of BO and OAC and identified a strong cell cycle gene expression signature in OAC compared to BO. Through analysing associated chromatin accessibility changes, we have implicated the transcription factor KLF5 in the transition from BO to OAC. Importantly, we show that KLF5 expression is unchanged during this transition, but instead, KLF5 is redistributed across chromatin in OAC cells to directly regulate cell cycle genes specifically in OAC. Our findings have potential prognostic significance as the survival of patients with high expression of KLF5 target genes is significantly lower. We have provided new insights into the gene expression networks in OAC and the mechanisms behind progression to OAC, chiefly the repurposing of KLF5 for novel regulatory activity in OAC.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Yi Zou ◽  
Jun Wang ◽  
Jian Peng ◽  
Hongkui Wei

Oregano essential oil (OEO) has long been used to improve the health of animals, particularly their intestinal health. The health benefits of OEO are generally attributed to antioxidative actions, but the mechanisms remain unclear. Here, we investigate the antioxidative effects of OEO and their underlying molecular mechanisms in porcine small intestinal epithelial (IPEC-J2) cells. We found that OEO treatment prior to hydrogen peroxide (H2O2) exposure increased cell viability and prevented lactate dehydrogenase (LDH) release into the medium. H2O2-induced reactive oxygen species (ROS) and malondialdehyde (MDA) were remarkably suppressed by OEO. OEO dose-dependently increased mRNA and protein levels of the nuclear factor-erythroid 2-related factor-2 (Nrf2) target genes Cu/Zn-superoxide dismutase (SOD1) and g-glutamylcysteine ligase (GCLC, GLCM), as well as intracellular concentrations of SOD1 and glutathione. OEO also increased intranuclear expression of Nrf2 and the activity of an antioxidant response element reporter plasmid in IPEC-J2 cells. The OEO-induced expression of Nrf2-regulated genes and increased SOD1 and glutathione concentrations in IPEC-J2 cells were reduced by Nrf2 small interfering (si) RNAs, counteracting the protective effects of OEO against oxidative stress in IPEC-J2 cells. Our results suggest that OEO protects against H2O2-induced IPEC-J2 cell damage by inducing Nrf2 and related antioxidant enzymes.


2007 ◽  
Vol 26 (2) ◽  
pp. 143-149 ◽  
Author(s):  
Zayil Salazar ◽  
Yvonne Ducolomb ◽  
Miguel Betancourt ◽  
Edmundo Bonilla ◽  
Leticia Cortés ◽  
...  

Malathion is a widely used pesticide and there is evidence that it could alter mammal’s germ and somatic cells, as well as cell lines. There are not enough studies showing how the nonacute malathion doses affect gene expression. This study analyzes gene expression alterations in pig morular embryos exposed in vitro , for 96 h, to several malathion concentrations after in vitro fertilization. cDNA libraries of isolated morular embryos were created and differential screenings performed to identify target genes. Seven clones were certainly identified. Genes related to mitochondrial metabolism as cytochrome c subunits I and III, nuclear genes such as major histocompatibility complex I (MHC I), and a hypothetical protein related with a splicing factor were the target of malathion’s deregulation effect. The widespread use of malathion as a pesticide should be regarded with reproductive implications and more detailed analysis would yield more about molecular mechanisms of malathion injury on embryo cells.


2013 ◽  
Vol 45 (14) ◽  
pp. 565-576 ◽  
Author(s):  
Pao-Yang Chen ◽  
Amit Ganguly ◽  
Liudmilla Rubbi ◽  
Luz D. Orozco ◽  
Marco Morselli ◽  
...  

Maternal nutrient restriction causes the development of adult onset chronic diseases in the intrauterine growth restricted (IUGR) fetus. Investigations in mice have shown that either protein or calorie restriction during pregnancy leads to glucose intolerance, increased fat mass, and hypercholesterolemia in adult male offspring. Some of these phenotypes are shown to persist in successive generations. The molecular mechanisms underlying IUGR remain unclear. The placenta is a critical organ for mediating changes in the environment and the development of embryos. To shed light on molecular mechanisms that might affect placental responses to differing environments we examined placentas from mice that had been exposed to different diets. We measured gene expression and whole genome DNA methylation in both male and female placentas of mice exposed to either caloric restriction or ad libitum diets. We observed several differentially expressed pathways associated with IUGR phenotypes and, most importantly, a significant decrease in the overall methylation between these groups as well as sex-specific effects that are more pronounced in males. In addition, a set of significantly differentially methylated genes that are enriched for known imprinted genes were identified, suggesting that imprinted loci may be particularly susceptible to diet effects. Lastly, we identified several differentially methylated microRNAs that target genes associated with immunological, metabolic, gastrointestinal, cardiovascular, and neurological chronic diseases, as well as genes responsible for transplacental nutrient transfer and fetal development.


2021 ◽  
Author(s):  
Ivano Legnini ◽  
Lisa Emmenegger ◽  
Ricardo Wurmus ◽  
Alessandra Zappulo ◽  
Anna Oliveras Martinez ◽  
...  

AbstractQuantifying gene expression in space, for example by spatial transcriptomics, is essential for describing the biology of cells and their interactions in complex tissues. Perturbation experiments, at single-cell resolution and conditional on both space and time, are necessary for dissecting the molecular mechanisms of these interactions. To this aim, we combined optogenetics and CRISPR technologies to activate or knock-down RNA of target genes, at single-cell resolution and in programmable spatial patterns. As a proof of principle, we optogenetically induced Sonic Hedgehog (SHH) signaling at a distinct spatial location within human neural organoids. This robustly induced known SHH spatial domains of gene expression – cell-autonomously and across the entire organoid. In principle, our approach can be used to induce or knock down RNAs from any gene of interest in specific spatial locations or patterns of complex biological systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei-Yang Chen ◽  
Hu Chen ◽  
Kana Hamada ◽  
Eleonora Gatta ◽  
Ying Chen ◽  
...  

AbstractAlcohol use disorder (AUD) is highly comorbid with depression. Withdrawal from chronic alcohol drinking results in depression and understanding brain molecular mechanisms that drive withdrawal-related depression is important for finding new drug targets to treat these comorbid conditions. Here, we performed RNA sequencing of the rat hippocampus during withdrawal from chronic alcohol drinking to discover key signaling pathways involved in alcohol withdrawal-related depressive-like behavior. Data were analyzed by weighted gene co-expression network analysis to identify several modules of co-expressed genes that could have a common underlying regulatory mechanism. One of the hub, or highly interconnected, genes in module 1 that increased during alcohol withdrawal was the transcription factor, signal transducer and activator of transcription 3 (Stat3), a known regulator of immune gene expression. Total and phosphorylated (p)STAT3 protein levels were also increased in the hippocampus during withdrawal after chronic alcohol exposure. Further, pSTAT3 binding was enriched at the module 1 genes Gfap, Tnfrsf1a, and Socs3 during alcohol withdrawal. Notably, pSTAT3 and its target genes were elevated in the postmortem hippocampus of human subjects with AUD when compared with control subjects. To determine the behavioral relevance of STAT3 activation during alcohol withdrawal, we treated rats with the STAT3 inhibitor stattic and tested for sucrose preference as a measure of anhedonia. STAT3 inhibition alleviated alcohol withdrawal-induced anhedonia. These results demonstrate activation of STAT3 signaling in the hippocampus during alcohol withdrawal in rats and in human AUD subjects, and suggest that STAT3 could be a therapeutic target for reducing comorbid AUD and depression.


2020 ◽  
Vol 326 ◽  
pp. 108649 ◽  
Author(s):  
Yeimmy Peralta-Ruiz ◽  
Carlos Grande Tovar ◽  
Angie Sinning-Mangonez ◽  
Daniel Bermont ◽  
Alexander Pérez Cordero ◽  
...  

2018 ◽  
Vol 62 (11-12) ◽  
pp. 723-732 ◽  
Author(s):  
Julie Carnesecchi ◽  
Pedro B. Pinto ◽  
Ingrid Lohmann

Hox transcription factors (TFs) function as key determinants in the specification of cell fates during development. They do so by triggering entire morphogenetic cascades through the activation of specific target genes. In contrast to their fundamental role in development, the molecular mechanisms employed by Hox TFs are still poorly understood. In recent years, a new picture has emerged regarding the function of Hox proteins in gene regulation. Initial studies have primarily focused on understanding how Hox TFs recognize and bind specific enhancers to activate defined Hox targets. However, genome-wide studies on the interactions and dynamics of Hox proteins have revealed a more elaborate function of the Hox factors. It is now known that Hox proteins are involved in several steps of gene expression with potential regulatory functions in the modification of the chromatin landscape and its accessibility, recognition and activation of specific cis-regulatory modules, assembly and activation of promoter transcription complexes and mRNA processing. In the coming years, the characterization of the molecular activity of Hox TFs in these mechanisms will greatly contribute to our general understanding of Hox activity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Solomon Boamah ◽  
Shuwu Zhang ◽  
Bingliang Xu ◽  
Tong Li ◽  
Alejandro Calderón-Urrea

Salinity is abiotic stress that inhibits seed germination and suppresses plant growth and root development in a dose-dependent manner. Fusarium pseudograminearum (Fg) is a plant pathogen that causes wheat crown rot. Chemical control methods against Fg are toxic to the environment and resistance has been observed in wheat crops. Therefore, an alternative approach is needed to manage this devastating disease and the effects of salinity. Our research focused on the mycoparasitic mechanisms of Trichoderma longibrachiatum (TG1) on Fg and the induction of defenses in wheat seedlings under salt and Fg stress at physiological, biochemical and molecular levels. The average inhibition rate of TG1 against Fg was 33.86%, 36.32%, 44.59%, and 46.62%, respectively, in the four NaCl treatments (0, 50, 100, and 150 mM). The mycoparasitic mechanisms of TG1 against Fg were coiling, penetration, and wrapping of Fg hyphae. In response to inoculation of TG1 with Fg, significant upregulation of cell wall degrading enzymes (CWDEs) was observed. The expression of β-1, 6-glucan synthase (PP4), endochitinase precursor (PH-1), and chitinase (chi18-15) increased by 1. 6, 1. 9, and 1.3-fold on day 14 compared with day 3. Wheat seedlings with combined TG1 + Fg treatments under different NaCl stress levels decreased disease index by an average of 51.89%; increased the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activity by an average of 38%, 61%, and 24.96%, respectively; and decreased malondialdehyde (MDA) and hydrogen peroxide (H2O2) content by an average of 44.07% and 41.75% respectively, compared with Fg treated seedlings. The combined TG1 + Fg treatment induced the transcription level of plant defense-related genes resulting in an increase in tyrosin-protein kinase (PR2), chitinase class I (CHIA1), and pathogenesis-related protein (PR1-2) by an average of 1.15, 1.35, and 1.37-fold, respectively compared to Fg treatment. However, the expression levels of phenylalanine ammonia-lyase (PAL) increased 3.40-fold under various NaCl stresses. Our results suggest that TG1 enhances wheat seedling growth and controls wheat crown rot disease by strengthening the plant defense system and upregulating the expression of pathogenesis-related genes under both Fg and salt stress.


Sign in / Sign up

Export Citation Format

Share Document