scholarly journals Deep Learning Assisted Neonatal Cry Classification via Support Vector Machine Models

2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.

2020 ◽  
Vol 17 (4) ◽  
pp. 572-578
Author(s):  
Mohammad Parseh ◽  
Mohammad Rahmanimanesh ◽  
Parviz Keshavarzi

Persian handwritten digit recognition is one of the important topics of image processing which significantly considered by researchers due to its many applications. The most important challenges in Persian handwritten digit recognition is the existence of various patterns in Persian digit writing that makes the feature extraction step to be more complicated.Since the handcraft feature extraction methods are complicated processes and their performance level are not stable, most of the recent studies have concentrated on proposing a suitable method for automatic feature extraction. In this paper, an automatic method based on machine learning is proposed for high-level feature extraction from Persian digit images by using Convolutional Neural Network (CNN). After that, a non-linear multi-class Support Vector Machine (SVM) classifier is used for data classification instead of fully connected layer in final layer of CNN. The proposed method has been applied to HODA dataset and obtained 99.56% of recognition rate. Experimental results are comparable with previous state-of-the-art methods


2021 ◽  
Vol 16 ◽  
Author(s):  
Farida Alaaeldin Mostafa ◽  
Yasmine Mohamed Afify ◽  
Rasha Mohamed Ismail ◽  
Nagwa Lotfy Badr

Background: Protein sequence analysis helps in the prediction of protein functions. As the number of proteins increases, it gives the bioinformaticians a challenge to analyze and study the similarity between them. Most of the existing protein analysis methods use Support Vector Machine. Deep learning did not receive much attention regarding protein analysis as it is noted that little work focused on studying the protein diseases classification. Objective: The contribution of this paper is to present a deep learning approach that classifies protein diseases based on protein descriptors. Methods: Different protein descriptors are used and decomposed into modified feature descriptors. Uniquely, we introduce using Convolutional Neural Network model to learn and classify protein diseases. The modified feature descriptors are fed to the Convolutional Neural Network model on a dataset of 1563 protein sequences classified into 3 different disease classes: Aids, Tumor suppressor, and Proto oncogene. Results: The usage of the modified feature descriptors shows a significant increase in the performance of the Convolutional Neural Network model over Support Vector Machine using different kernel functions. One modified feature descriptor improved by 19.8%, 27.9%, 17.6%, 21.5%, 17.3%, and 22% for evaluation metrics: Area Under the Curve, Matthews Correlation Coefficient, Accuracy, F1-score, Recall, and Precision, respectively. Conclusion: Results show that the prediction of the proposed modified feature descriptors significantly surpasses that of Support Vector Machine model.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7853
Author(s):  
Aleksej Logacjov ◽  
Kerstin Bach ◽  
Atle Kongsvold ◽  
Hilde Bremseth Bårdstu ◽  
Paul Jarle Mork

Existing accelerometer-based human activity recognition (HAR) benchmark datasets that were recorded during free living suffer from non-fixed sensor placement, the usage of only one sensor, and unreliable annotations. We make two contributions in this work. First, we present the publicly available Human Activity Recognition Trondheim dataset (HARTH). Twenty-two participants were recorded for 90 to 120 min during their regular working hours using two three-axial accelerometers, attached to the thigh and lower back, and a chest-mounted camera. Experts annotated the data independently using the camera’s video signal and achieved high inter-rater agreement (Fleiss’ Kappa =0.96). They labeled twelve activities. The second contribution of this paper is the training of seven different baseline machine learning models for HAR on our dataset. We used a support vector machine, k-nearest neighbor, random forest, extreme gradient boost, convolutional neural network, bidirectional long short-term memory, and convolutional neural network with multi-resolution blocks. The support vector machine achieved the best results with an F1-score of 0.81 (standard deviation: ±0.18), recall of 0.85±0.13, and precision of 0.79±0.22 in a leave-one-subject-out cross-validation. Our highly professional recordings and annotations provide a promising benchmark dataset for researchers to develop innovative machine learning approaches for precise HAR in free living.


2020 ◽  
Vol 17 (4) ◽  
pp. 1925-1930
Author(s):  
Ambeshwar Kumar ◽  
R. Manikandan ◽  
Robbi Rahim

It’s a new era technology in the field of medical engineering giving awareness about the various healthcare features. Deep learning is a part of machine learning, it is capable of handling high dimensional data and is efficient in concentrating on the right features. Tumor is an unbelievably complex disease: a multifaceted cell has more than hundred billion cells; each cell acquires mutation exclusively. Detection of tumor particles in experiment is easily done by MRI or CT. Brain tumors can also be detected by MRI, however, deep learning techniques give a better approach to segment the brain tumor images. Deep Learning models are imprecisely encouraged by information handling and communication designs in biological nervous system. Classification plays an significant role in brain tumor detection. Neural network is creating a well-organized rule for classification. To accomplish medical image data, neural network is trained to use the Convolution algorithm. Multilayer perceptron is intended for identification of a image. In this study article, the brain images are categorized into two types: normal and abnormal. This article emphasize the importance of classification and feature selection approach for predicting the brain tumor. This classification is done by machine learning techniques like Artificial Neural Networks, Support Vector Machine and Deep Neural Network. It could be noted that more than one technique can be applied for the segmentation of tumor. The several samples of brain tumor images are classified using deep learning algorithms, convolution neural network and multi-layer perceptron.


2021 ◽  
Vol 8 (2) ◽  
pp. 311
Author(s):  
Mohammad Farid Naufal

<p class="Abstrak">Cuaca merupakan faktor penting yang dipertimbangkan untuk berbagai pengambilan keputusan. Klasifikasi cuaca manual oleh manusia membutuhkan waktu yang lama dan inkonsistensi. <em>Computer vision</em> adalah cabang ilmu yang digunakan komputer untuk mengenali atau melakukan klasifikasi citra. Hal ini dapat membantu pengembangan <em>self autonomous machine</em> agar tidak bergantung pada koneksi internet dan dapat melakukan kalkulasi sendiri secara <em>real time</em>. Terdapat beberapa algoritma klasifikasi citra populer yaitu K-Nearest Neighbors (KNN), Support Vector Machine (SVM), dan Convolutional Neural Network (CNN). KNN dan SVM merupakan algoritma klasifikasi dari <em>Machine Learning</em> sedangkan CNN merupakan algoritma klasifikasi dari Deep Neural Network. Penelitian ini bertujuan untuk membandingkan performa dari tiga algoritma tersebut sehingga diketahui berapa gap performa diantara ketiganya. Arsitektur uji coba yang dilakukan adalah menggunakan 5 cross validation. Beberapa parameter digunakan untuk mengkonfigurasikan algoritma KNN, SVM, dan CNN. Dari hasil uji coba yang dilakukan CNN memiliki performa terbaik dengan akurasi 0.942, precision 0.943, recall 0.942, dan F1 Score 0.942.</p><p class="Abstrak"> </p><p class="Abstrak"><em><strong>Abstract</strong></em></p><p class="Abstract"><em>Weather is an important factor that is considered for various decision making. Manual weather classification by humans is time consuming and inconsistent. Computer vision is a branch of science that computers use to recognize or classify images. This can help develop self-autonomous machines so that they are not dependent on an internet connection and can perform their own calculations in real time. There are several popular image classification algorithms, namely K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Convolutional Neural Network (CNN). KNN and SVM are Machine Learning classification algorithms, while CNN is a Deep Neural Networks classification algorithm. This study aims to compare the performance of that three algorithms so that the performance gap between the three is known. The test architecture is using 5 cross validation. Several parameters are used to configure the KNN, SVM, and CNN algorithms. From the test results conducted by CNN, it has the best performance with 0.942 accuracy, 0.943 precision, 0.942 recall, and F1 Score 0.942.</em></p><p class="Abstrak"><em><strong><br /></strong></em></p>


2018 ◽  
Vol 7 (2.24) ◽  
pp. 428
Author(s):  
Rishi Khosla ◽  
Yashovardhan Singh ◽  
T Balachander

Mobile Technologies have been in trend for quite some time and with the advances in machine learning, they have become more powerful. Computer Vision, Computational Analysis and Computer Graphics have changed over the course of time. In this Project, our aim is to figure out the domains in which Machine Learning can be applied to enhance the capabilities of a Mobile Device which would lead to a better and sustainable mobile user experience.  The models we would use are a convolutional neural network (CNN), support vector machine (SVM) and scale-invariant feature transform (SIFT). This project uses the real-time image from a mobile device and does the classification and detection with the help of Tensor Flow and provides the result with a confidence score. 


2020 ◽  
Author(s):  
Monalisha Ghosh ◽  
Goutam Sanyal

Abstract ­­­­­­­­­­­­­­­­­­­­­­­­­­­ Sentiment Analysis has recently been considered as the most active research field in the natural language processing (NLP) domain. Deep Learning is a subset of the large family of Machine Learning and becoming a growing trend due to its automatic learning capability with impressive consequences across different NLP tasks. Hence, a fusion-based Machine Learning framework has been attempted by merging the Traditional Machine Learning method with Deep Learning techniques to tackle the challenge of sentiment prediction for a massive amount of unstructured review dataset. The proposed architecture aims to utilize the Convolutional Neural Network (CNN) with a backpropagation algorithm to extract embedded feature vectors from the top hidden layer. Thereafter, these vectors augmented to an optimized feature set generated from binary particle swarm optimization (BPSO) method. Finally, a traditional SVM classifier is trained with these extended features set to determine the optimal hyper-plane for separating two classes of review datasets. The evaluation of this research work has been carried out on two benchmark movie review datasets IMDB, SST2. Experimental results with comparative studies based on performance accuracy and F-score value are reported to highlight the benefits of the developed frameworks.


2021 ◽  
Author(s):  
Ewerthon Dyego de Araújo Batista ◽  
Wellington Candeia de Araújo ◽  
Romeryto Vieira Lira ◽  
Laryssa Izabel de Araújo Batista

Dengue é um problema de saúde pública no Brasil, os casos da doença voltaram a crescer na Paraíba. O boletim epidemiológico da Paraíba, divulgado em agosto de 2021, informa um aumento de 53% de casos em relação ao ano anterior. Técnicas de Machine Learning (ML) e de Deep Learning estão sendo utilizadas como ferramentas para a predição da doença e suporte ao seu combate. Por meio das técnicas Random Forest (RF), Support Vector Regression (SVR), Multilayer Perceptron (MLP), Long ShortTerm Memory (LSTM) e Convolutional Neural Network (CNN), este artigo apresenta um sistema capaz de realizar previsões de internações causadas por dengue para as cidades Bayeux, Cabedelo, João Pessoa e Santa Rita. O sistema conseguiu realizar previsões para Bayeux com taxa de erro 0,5290, já em Cabedelo o erro foi 0,92742, João Pessoa 9,55288 e Santa Rita 0,74551.


Author(s):  
Aires Da Conceicao ◽  
Sheshang D. Degadwala

Self-driving vehicle is a vehicle that can drive by itself it means without human interaction. This system shows how the computer can learn and the over the art of driving using machine learning techniques. This technique includes line lane tracker, robust feature extraction and convolutional neural network.


2020 ◽  
Vol 10 (7) ◽  
pp. 1746-1753
Author(s):  
Lan Liu ◽  
Xiankun Sun ◽  
Chengfan Li ◽  
Yongmei Lei

Conventional methods of medical text data classification, neglect of context among different words and semantic information, has a poor text description, classification effect and generalization capability and robustness. To tackle the inefficiencies and low precision in the classification of medical text data, in this paper, we presented a new classification method with improved convolutional neural network (CNN) and support vector machine (SVM), i.e., CNN-SVM method. In the method, some convolution kernel filters that contribute greatly to the CNN model are first selected by the average response energy (ARE) value, and then used to simplify and reconstruct the CNN model. Next, the SVM classifier was optimized by firefly algorithm (FA) and context information to overcome the disadvantages of over-saturation and over-training in SVM classification. Finally, the presented CNN-SVM method is tested by the simulation experiment and the true classification of medical text data. The experimental results show that the presented CNN-SVM method in this paper can significantly reduce the complexity and amount of computation compared to the conventional methods, and further promote the computational efficiency and classification accuracy of medical text data.


Sign in / Sign up

Export Citation Format

Share Document