infant cry
Recently Published Documents


TOTAL DOCUMENTS

277
(FIVE YEARS 61)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
pp. 1-14
Author(s):  
V. Vaishnavi ◽  
P. Suveetha Dhanaselvam

The study of neonatal cry signals is always an interesting topic and still researcher works interminably to develop some module to predict the actual reason for the baby cry. It is really hard to predict the reason for their cry. The main focus of this paper is to develop a Dense Convolution Neural network (DCNN) to predict the cry. The target cry signal is categorized into five class based on their sound as “Eair”, “Eh”, “Neh”, “Heh” and “Owh”. Prediction of these signals helps in the detection of infant cry reason. The audio and speech features (AS Features) were exacted using Mel-Bark frequency cepstral coefficient from the spectrogram cry signal and fed into DCNN network. The systematic DCNN architecture is modelled with modified activation layer to classify the cry signal. The cry signal is collected in different growth phase of the infants and tested in proposed DCNN architecture. The performance of the system is calculated through parameters accuracy, specificity and sensitivity are calculated. The output of proposed system yielded a balanced accuracy of 92.31%. The highest accuracy level 95.31%, highest specificity level 94.58% and highest sensitivity level 93% attain through proposed technique. From this study, it is concluded that the proposed technique is more efficient in detecting cry signal compared to the existing techniques.


2022 ◽  
pp. 629-647
Author(s):  
Yosra Abdulaziz Mohammed

Cries of infants can be seen as an indicator of pain. It has been proven that crying caused by pain, hunger, fear, stress, etc., show different cry patterns. The work presented here introduces a comparative study between the performance of two different classification techniques implemented in an automatic classification system for identifying two types of infants' cries, pain, and non-pain. The techniques are namely, Continuous Hidden Markov Models (CHMM) and Artificial Neural Networks (ANN). Two different sets of acoustic features were extracted from the cry samples, those are MFCC and LPCC, the feature vectors generated by each were eventually fed into the classification module for the purpose of training and testing. The results of this work showed that the system based on CDHMM have better performance than that based on ANN. CDHMM gives the best identification rate at 96.1%, which is much higher than 79% of ANN whereby in general the system based on MFCC features performed better than the one that utilizes LPCC features.


2022 ◽  
pp. 351-374
Author(s):  
Mario Mandujano Valdes ◽  
Orion F. Reyes-Galaviz ◽  
Sergio D. Cano Ortiz ◽  
Carlos A. Reyes-García
Keyword(s):  

2022 ◽  
Vol 12 (1) ◽  
pp. 1-17
Author(s):  
Nagaraj V. Dharwadkar ◽  
Amulya A. Dixit ◽  
Anil K. Kannur ◽  
Mohammad Ali Bandusab Kadampur ◽  
Santosh Joshi

Abstract. The infants admitted in the Neonatal Intensive Care Unit (NICU) always need a Hygienic environment and round the clock observations. Infants or the just born babies always express their physical and emotional needs through cry. Thus, the detection of the reasons behind the infant cry plays a vital role in monitoring the health of the babies in the NICU. In this paper, we have proposed a novel approach for detecting the reasons for Infant's cry. In the proposed approach the cry signal of the infant is captured and from this signal, the unique set of features are extracted using MFCCs, LPCCs, and Pitch. This set of features is used to differentiates the patters signals to recognize the reasons for the cry. The reasons for cry such as hunger, pain, sleep, and discomfort are used to represent different classes. The Neural Network Multilayer classifier is designed to recognize the reasons for the cry using the standard dataset of infant cry. The proposed classifier can achieve accuracy of 93.24% from the combined features of MFCCs, LPCCs and Pitch using


2022 ◽  
Vol 154 ◽  
pp. 111700
Author(s):  
Salim Lahmiri ◽  
Chakib Tadj ◽  
Christian Gargour ◽  
Stelios Bekiros

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Chuan-Yu Chang ◽  
Sweta Bhattacharya ◽  
P. M. Durai Raj Vincent ◽  
Kuruva Lakshmanna ◽  
Kathiravan Srinivasan

The cry is a loud, high pitched verbal communication of infants. The very high fundamental frequency and resonance frequency characterize a neonatal infant cry having certain sudden variations. Furthermore, in a tiny duration solitary utterance, the cry signal also possesses both voiced and unvoiced features. Mostly, infants communicate with their caretakers through cries, and sometimes, it becomes difficult for the caretakers to comprehend the reason behind the newborn infant cry. As a result, this research proposes a novel work for classifying the newborn infant cries under three groups such as hunger, sleep, and discomfort. For each crying frame, twelve features get extracted through acoustic feature engineering, and the variable selection using random forests was used for selecting the highly discriminative features among the twelve time and frequency domain features. Subsequently, the extreme gradient boosting-powered grouped-support-vector network is deployed for neonate cry classification. The empirical results show that the proposed method could effectively classify the neonate cries under three different groups. The finest experimental results showed a mean accuracy of around 91% for most scenarios, and this exhibits the potential of the proposed extreme gradient boosting-powered grouped-support-vector network in neonate cry classification. Also, the proposed method has a fast recognition rate of 27 seconds in the identification of these emotional cries.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.


Author(s):  
Chunyan Ji ◽  
Thosini Bamunu Mudiyanselage ◽  
Yutong Gao ◽  
Yi Pan

AbstractThis paper reviews recent research works in infant cry signal analysis and classification tasks. A broad range of literatures are reviewed mainly from the aspects of data acquisition, cross domain signal processing techniques, and machine learning classification methods. We introduce pre-processing approaches and describe a diversity of features such as MFCC, spectrogram, and fundamental frequency, etc. Both acoustic features and prosodic features extracted from different domains can discriminate frame-based signals from one another and can be used to train machine learning classifiers. Together with traditional machine learning classifiers such as KNN, SVM, and GMM, newly developed neural network architectures such as CNN and RNN are applied in infant cry research. We present some significant experimental results on pathological cry identification, cry reason classification, and cry sound detection with some typical databases. This survey systematically studies the previous research in all relevant areas of infant cry and provides an insight on the current cutting-edge works in infant cry signal analysis and classification. We also propose future research directions in data processing, feature extraction, and neural network classification fields to better understand, interpret, and process infant cry signals.


Sign in / Sign up

Export Citation Format

Share Document