scholarly journals Underwater Target Localization Using Opportunistic Ship Noise Recorded on a Compact Hydrophone Array

Acoustics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 611-629
Author(s):  
Mojgan Mirzaei Hotkani ◽  
Jean-Francois Bousquet ◽  
Seyed Alireza Seyedin ◽  
Bruce Martin ◽  
Ehsan Malekshahi

In this research, a new application using broadband ship noise as a source-of-opportunity to estimate the scattering field from the underwater targets is reported. For this purpose, a field trial was conducted in collaboration with JASCO Applied Sciences at Duncan’s Cove, Canada in September 2020. A hydrophone array was deployed in the outbound shipping lane at a depth of approximately 71 m to collect broadband noise data from different ship types and effectively localize the underwater targets. In this experiment, a target was installed at a distance (93 m) from the hydrophone array at a depth of 25 m. In this study, a matched field processing (MFP) algorithm is utilized for localization. Different propagation models are presented using Green’s function to generate the replica signal; this includes normal modes in a shallow water waveguide, the Lloyd-mirror pattern for deep water, as well as the image model. We use the MFP algorithm with different types of underwater environment models and a proposed estimator to find the best match between the received signal and the replica signal. Finally, by applying the scatter function on the proposed multi-channel cross correlation coefficient time-frequency localization algorithm, the location of target is detected.

2016 ◽  
Vol 63 (8) ◽  
pp. 1718-1727 ◽  
Author(s):  
Shovan Barma ◽  
Bo-Wei Chen ◽  
Wen Ji ◽  
Seungmin Rho ◽  
Chih-Hung Chou ◽  
...  

2007 ◽  
Vol 29 (2) ◽  
pp. 73-82 ◽  
Author(s):  
Le Thai Hoa ◽  
Nguyen Dong Anh

Recent models of wind turbulence and turbulence-force relation as well still contain uncertainties. Further studies on them are needed to gain the better knowledge to refine the existing problems from analytical computations to wind tunnel's physical simulations in the wind engineering. The continuous and discrete wavelet transforms have been applied as powerful transformation tools to represent time series into the time-frequency localization. This paper will apply the orthogonal-based wavelet decomposition to investigate the intermittency of the turbulence and to detect the turbulence-force correlation in the both temporal-spectral information using proposed cross energy of wavelet decompositions. Analyzing data have been obtained by physical measurements on model from the wind tunnel tests.


2013 ◽  
Vol 385-386 ◽  
pp. 1389-1393 ◽  
Author(s):  
Lin Chai ◽  
Jun Ru Sun

Extracting voltage flicker from the sampling voltage signal is a precondition for management of flicker. Voltage flicker signal is a low frequency time-varying non-stationary signal. The traditional fourier transform has great limitations when analyze the non-stationary signal for not having the time resolution. As wavelet transform has good property of time-frequency localization, it become a powerful tool for analyze this kind of signal. This paper adopts multi-resolution analysis of wavelet to extract voltage flicker signal. Furthermore, according to the characteristics of wavelet function, this paper selects Daubechies wavelet to accomplish the multi-level decomposition and reconstruction of signal, in order to get the frequency and amplitude of voltage flicker signals. Based on the principle of modulus maximum, it can be determined what time the voltage flicker happen and over. The results of MATLAB simulation indicate that voltage flicker signal can be effectively extracted by wavelet multi-resolution analysis. Wavelet multi-resolution analysis is considerably ideal for voltage flicker extraction.


2016 ◽  
Vol 15 (2) ◽  
pp. 241-246 ◽  
Author(s):  
Guang Yang ◽  
Jingwei Yin ◽  
Yun Yu ◽  
Zhenhua Shi

2012 ◽  
Vol 452-453 ◽  
pp. 782-788
Author(s):  
Jin Feng Wang ◽  
Li Jie Feng ◽  
Zhao Hui Li

For the coal resources working which are affected by the coal mine flooding seriously, this paper make an analysis on the factors which affect the coal mine flooding emergency ability evaluation model based on GA-WNN is established through the wavelet neural network value which is optimized with genetic algorithm. This model combined the global optimization ability of genetic algorithm with the time-frequency localization of wavelet neural network. This combination can make up for many defects (for example, the neural network structure should be given artificially, the function can got local minimum easily and so on). Therefore, the local mine flooding emergency ability evaluation model based on genetic algorithm and wavelet neural network have higher reliability and calculation ability, and is beneficial to the pre-control management for coal mine flooding rescue.


Sign in / Sign up

Export Citation Format

Share Document