scholarly journals Extended-State-Observer-Based Super Twisting Control for Pneumatic Muscle Actuators

Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 35
Author(s):  
Yu Cao ◽  
Zhongzheng Fu ◽  
Mengshi Zhang ◽  
Jian Huang

This paper presents a tracking control method for pneumatic muscle actuators (PMAs). Considering that the PMA platform only feedbacks position, and the velocity and disturbances cannot be observed directly, we use the extended-state-observer (ESO) for simultaneously estimating the system states and disturbances by using measurable variables. Integrated with the ESO, a super twisting controller (STC) is design based on estimated states to realize the high-precision tracking. According to the Lyapunov theorem, the stability of the closed-loop system is ensured. Simulation and experimental studies are conducted, and the results show the convergence of the ESO and the effectiveness of the proposed method.

2019 ◽  
Vol 41 (13) ◽  
pp. 3581-3599 ◽  
Author(s):  
Umesh Kumar Sahu ◽  
Bidyadhar Subudhi ◽  
Dipti Patra

Currently, space robots such as planetary robots and flexible-link manipulators (FLMs) are finding specific applications to reduce the cost of launching. However, the structural flexible nature of their arms and joints leads to errors in tip positioning owing to tip deflection. The internal model uncertainties and disturbance are the key challenges in the development of control strategies for tip-tracking of FLMs. To deal with these challenges, we design a tip-tracking controller for a two-link flexible manipulator (TLFM) by developing a sampled-data extended state observer (SD-ESO). It is designed to reconstruct uncertain parameters for accurate tip-tracking control of a TLFM. Finally, a backstepping (BS) controller is designed to attenuate the estimation error and other bounded disturbances. Convergence and stability of the proposed control system are investigated by using Lyapunov theory. The benefits (control performance and robustness) of the proposed SD-ESO-based BS controller are compared with other similar approaches by pursuing both simulation and experimental studies. It is observed from the results obtained that SD-ESO-based BS Controller effectively compensates the deviation in tip-tracking performance of TLFM due to non-minimum phase behavior and model uncertainties with an improved transient response.


2020 ◽  
Vol 42 (14) ◽  
pp. 2733-2743
Author(s):  
Jiqiang Tang ◽  
Tongkun Wei ◽  
Qichao Lv ◽  
Xu Cui

For a magnetically suspended control moment gyro (MSCMG), which is an ideal attitude actuator for its large outputting control moment and fast response, the moving-gimbal effects due to the coupling between the moving gimbal and high-speeding rotor will make the magnetically suspended rotor (MSR) unstable. To improve control precision, both the dynamic model of MSR and the feedback linearization control are done to decouple tilting motion, and poles of the system are reconfigured to reduce control error. To suppress the varying disturbance moments caused by moving-gimbal effects, an extended state observer (ESO) is originally designed to estimate and compensate them timely and accurately. To improve system robustness, a two-degree freedom internal model control (2-DOF IMC) is researched to suppress model error. Compared with existing proportional integral derivative (PID) control method, simulations done on a single gimbal MSCMG with 200 N.m.s angular momentum indicated that this presented control method with ESO and 2-DOF IMC can suppress the moving-gimbal effects more effectively and make the rotor suspension more stable.


2020 ◽  
Vol 10 (11) ◽  
pp. 3719
Author(s):  
Ran Jiao ◽  
Wusheng Chou ◽  
Yongfeng Rong ◽  
Mingjie Dong

Aerial operation with unmanned aerial vehicle (UAV) manipulator is a promising field for future applications. However, the quadrotor UAV manipulator usually suffers from several disturbances, such as external wind and model uncertainties, when conducting aerial tasks, which will seriously influence the stability of the whole system. In this paper, we address the problem of high-precision attitude control for quadrotor manipulator which is equipped with a 2-degree-of-freedom (DOF) robotic arm under disturbances. We propose a new sliding-mode extended state observer (SMESO) to estimate the lumped disturbance and build a backstepping attitude controller to attenuate its influence. First, we use the saturation function to replace discontinuous sign function of traditional SMESO to alleviate the estimation chattering problem. Second, by innovatively introducing super-twisting algorithm and fuzzy logic rules used for adaptively updating the observer switching gains, the fuzzy adaptive saturation super-twisting extended state observer (FASTESO) is constructed. Finally, in order to further reduce the impact of sensor noise, we invite a tracking differentiator (TD) incorporated into FASTESO. The proposed control approach is validated with effectiveness in several simulations and experiments in which we try to fly UAV under varied external disturbances.


Author(s):  
Wenming Nie ◽  
Huifeng Li ◽  
Ran Zhang ◽  
Bo Liu

The ascent trajectory tracking problem of a launch vehicle is investigated in this paper. To improve the conventional trajectory linearization method which usually omits the linearization errors, the extended state observer (ESO) is employed in this paper to timely estimate the total disturbance which consists of the external disturbances and the modeling uncertainties resulting from linearization error. It is proven that the proposed trajectory tracking controller can guarantee the desired performance despite both external disturbances and the modeling uncertainties. Moreover, compared with the conventional linearization control method, the proposed controller is shown to have much better performance of uncertainty rejection. Finally, the feasibility and performance of this controller are illuminated via simulation studies.


Author(s):  
Hui Li ◽  
Ruiqin Li ◽  
Jianwei Zhang

Controlling an underactuated robot is always an important research and engineering issue, especially when the robot is suffering from multiple sources of uncertainties, such as unmodeled dynamics, external disturbance, and parameter uncertainties. To cope with these uncertainties in such uncertain nonlinear systems which is not fully-actuated, this paper proposes a control method that can actively estimate these uncertainties via the extended state observer (ESO), under the scheme of output-feedback control, the lumped uncertainties can be online estimated and actively compensated. Every joint of the underactuated robotic system can robustly reach the pre-given state in finite-time even though there are only fewer joints than the actual number of joints that can be controlled directly. The experimental results demonstrate the control process and validate that the proposed method is feasible for the studied underactuated robotic system.


2019 ◽  
Vol 52 (9-10) ◽  
pp. 1394-1402 ◽  
Author(s):  
Shengquan Li ◽  
Juan Li ◽  
Hanwen Wu ◽  
Zhongwen Lin

Considering the problems of the internal and external disturbances of wind speed in the direct-drive wind energy conversion system based on a permanent magnet synchronous generator, a novel model predictive control based on the extended state observer method without the accurate mathematical system model is proposed in this paper. First, a model predictive control method is employed as the feedback controller, while the mathematical model of the control system can be adjusted online via the rolling optimization strategy. Second, an extended state observer is introduced to estimate the state variables and lumped disturbances, that is, the internal disturbances including nonlinear characteristic, multi-variety coupling effect, uncertainties of system parameters, and external disturbances including variations of wind speeds and uncertainties of the natural environment. Third, the effect of lumped disturbances can be attenuated by the estimated disturbance value via a feedforward channel. In addition, in order to achieve the real-time speed control performance of the permanent magnet synchronous generator, a speed sensorless algorithm based on a flux observer is proposed to solve the problem of unsuitability of mechanical speed sensor. Finally, the simulation results with several wind speed types show that the proposed sensorless model predictive control with the extended state observer strategy is an effective way to improve the performance of anti-disturbance and ability of tracking maximum wind energy of the wind power control system.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yuteng Cao ◽  
Qi Liu ◽  
Guiqin He ◽  
Qiuling Zhao ◽  
Fang Liu

Abstract In this article, a three-axis attitude manoeuvre spacecraft consisting of a central rigid body and a rotating solar array is studied. The rotating solar array is considered a disturbance to the spacecraft. In the design of the controller, the coupled terms and the rotating solar array are considered a disturbance. The improved extended state observer is proposed by combing the sliding mode observer with the originally extended state observer to estimate the disturbance. The sliding mode control method is adopted to adjust the attitude of the spacecraft. Numerical simulations are presented to demonstrate the outstanding performance of the present observer.


2019 ◽  
Vol 39 (2) ◽  
pp. 435-450 ◽  
Author(s):  
Xinxin Wang ◽  
Xiaoqiang Yan

Rolling mills vibration is a key factor that hinders the production of thin-strip steel. Currently, vibration is mainly suppressed by adjusting rolling mill parameters which is not a common approach. Due to special working conditions, the information of work roll, such as displacement and velocity, cannot be directly measured. Therefore, based on extended state observer, new resonance ratio control method, which is a common approach, is proposed to suppress the rolling mill vibration. First, the equivalent mass of the back roll is identified. Then, the interaction force between the work roll and the back roll and the velocity of the back roll are estimated using the extended state observer. Finally, these values are introduced into the input of the servo valve to compensate. The simulation results indicate that vibrations of both the work roll and the back roll are suppressed, and this method has a great tolerance for the identification error of the back-roll equivalent mass, and extended state observer compensation possesses a more superior vibration suppression than disturbance observer compensation.


Sign in / Sign up

Export Citation Format

Share Document