scholarly journals Towards Fabrication of Planar Magnetoelectric Devices: Coil-Free Excitation of Ferromagnet-Piezoelectric Heterostructures

Actuators ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 294
Author(s):  
Dmitri Burdin ◽  
Dmitri Chashin ◽  
Leonid Fetisov ◽  
Dmitri Saveliev ◽  
Nikolai Ekonomov ◽  
...  

Magnetoelectric (ME) effects in composite ferromagnet-piezoelectric (FM/PE) heterostructures realize the mutual transformation of alternating magnetic and electric fields, and are used to create magnetic field sensors, actuators, inductors, gyrators, and transformers. The ME effect in composite structures is excited by an alternating magnetic field, which is created using volumetric electromagnetic coils. The coil increases the size, limits the operating frequencies, and complicates the manufacture of devices. In this work, we propose to excite the ME effect in composite heterostructures using a new coil-free excitation system, similar to a “magnetic capacitor”. The system consists of parallel electrodes integrated into the heterostructure, through which an alternating current flows. Modeling and measurements have shown that the excitation magnetic field is localized mainly between the electrodes of the magnetic capacitor and has a fairly uniform spatial distribution. Monolithic FM/PE heterostructures of various designs with FM layers of amorphous Metglas alloy or nickel-zinc ferrite and PE layers of lead zirconate titanate piezoceramic were fabricated and investigated. The magnitude of the ME effect in such structures is comparable to the magnitude of the ME effect in structures excited by volumetric coils. However, the low impedance of the coil-free excitation system makes it possible to increase the operating frequency, reducing the size of ME devices and the power consumption. The use of coil-free excitation opens up the possibility of creating planar ME devices, and accelerates their integration into modern electronics and microsystem technology.

2015 ◽  
Vol 233-234 ◽  
pp. 357-359 ◽  
Author(s):  
Dmitry Burdin ◽  
Dmitry Chashin ◽  
Nikolay Ekonomov ◽  
Yuri Fetisov

Temperature characteristics of resonant magnetoelectric effect in bilayer structures consisting of langatate, lead zirconate titanate, nickel, and amorphous ferromagnetic Metglas layers have been investigated. The measurements were performed in the temperature range of 150-400 K. The influence of the ferromagnetic and piezoelectric layer’s parameters on the temperature dependence of resonant frequency and magnetoelectric coefficient αE has been demonstrated. The results can be used to develop magnetoelectric magnetic field sensors.


1999 ◽  
Vol 14 (7) ◽  
pp. 2940-2944 ◽  
Author(s):  
Fei Fang ◽  
Wei Yang ◽  
Ting Zhu

Lanthanum-modified lead zirconate titanate ferroelectric ceramics (Pb0.96La0.04)(Zr0.40Ti0.60)0.99O3 were synthesized by the conventional powder processing technique. X-ray diffraction experiments revealed that the samples belong to the tetragonal phase with a = b = 0.4055 nm, c = 0.4109 nm, and c/a = 1.013. After being poled, the samples were indented with a 5-kg Vickers indenter, and lateral electric fields of 0.4 Ec, 0.5 Ec, and 0.6 Ec (Ec = 1100 V/mm) were applied, respectively. Field-emission scanning electron microscopy showed that 90° domain switching appeared near the tip of the indentation crack under a lateral electric field of 0.6 Ec. A mechanism of 90° domain switching near the crack tip under an electric field is discussed.


Author(s):  
Salinee Choowitsakunlert ◽  
Rardchawadee Silapunt ◽  
Hideki Yokoi

This paper presents a study of the effect of antiferromagnetic (AFM) integration on the nano AFM-pinned multiferroic (MF) composites structure. The nano MF composites structure is a potential candidate for a future magnetic read head. The simulation of the AFM/ferromagnetic (FM) bilayers characteristics and the evaluation of the magnetoelectric (ME) effect induced in the 1-dimensional (1D) L-T mode model of AFM-pinned structure of AFM/FM/Ferroelectric (FE)/FM/AFM are performed. FM, FE, and two types of AFM materials are Terfenol-D, lead zirconate titanate (PZT), and PtMn and Cr2O3, respectively. The magnetoelectric (ME) effect is investigated using the 1D standard square law. Magnetic-field induced strain in the FM layer, piezoelectric response of the PZT layer, and the ME coefficient are determined. Specifically, the influence of AFM on the MF composites structure for various AFM thicknesses is of interest. It is found that the maximum electric field and potential across the PZT layer are achieved at 2.7 nm thick of PtMn. The result is well agreed by associated magnetic field-induced strain and ME coefficient.


Author(s):  
Д.А. Бурдин ◽  
Д.В. Чашин ◽  
Н.А. Экономов ◽  
Ю.К. Фетисов

Parametric amplification of magnetoacoustic oscillations was observed in a disk resonator containing a ferromagnetic layer of FeBSiC and a piezoelectric layer of lead zirconate-titanate. Oscillations with a frequency of 3.08 kHz were excited and recorded using two coils with orthogonal axes. Pumping was performed by an electric field with a double frequency applied to the piezoelectric layer. The amplification of vibrations arises due to a change in the rigidity of the structure under influence of an electric field. It is shown that the gain can be changed using a permanent bias magnetic field applied to the structure.


Author(s):  
Д.А. Филиппов ◽  
В.М. Лалетин ◽  
Н.Н. Поддубная ◽  
V.V. Shvartsman ◽  
D.C. Lupascu ◽  
...  

A new way for determining the magnetostriction characteristics of a composite multiferroics using the magnetoelectric response of the structure is proposed. It is shown that integral from the field dependency of linear magnetoelectric coefficient is the magnetostriction characteristic of the structure. The results of an experimental study of the physical properties of bulk composites based on lead zirconate titanate and ferrite-nickel spinel are presented. Based on the field dependence of the magnetoelectric voltage coefficient, magnetostriction curves of composite structures with a content of ferrospinel of 10–70% were obtained.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6232
Author(s):  
Mirza Bichurin ◽  
Roman Petrov ◽  
Oleg Sokolov ◽  
Viktor Leontiev ◽  
Viktor Kuts ◽  
...  

One of the new materials that have recently attracted wide attention of researchers are magnetoelectric (ME) composites. Great interest in these materials is due to their properties associated with the transformation of electric polarization/magnetization under the influence of external magnetic/electric fields and the possibility of their use to create new devices. In the proposed review, ME magnetic field sensors based on the widely used structures Terfenol—PZT/PMN-PT, Metglas—PZT/PMN-PT, and Metglas—Lithium niobate, among others, are considered as the first applications of the ME effect in technology. Estimates of the parameters of ME sensors are given, and comparative characteristics of magnetic field sensors are presented. Taking into account the high sensitivity of ME magnetic field sensors, comparable to superconducting quantum interference devices (SQUIDs), we discuss the areas of their application.


2020 ◽  
Vol 18 (01) ◽  
pp. 1941023 ◽  
Author(s):  
Ekaterina Moreva

Here, we discussed the current challenges related with the application of Nitrogen-vacancy (NV)-based magnetometers for biological systems. Major constraints for diamond sensor type as optical illumination, microwave field, bias magnetic field, optics, method of photoluminescence detection and sample preparation have been analyzed. Special attention was paid to the estimation of electromagnetic fields in the nervous system. The mechanism of action potential generation and resultant local current flows was discussed, corresponding magnetic field outside an axon was estimated. It was shown that sensitivity of upcoming generation of NV magnetic field sensors may not be enough for the measurement of single neuron action potential, while monitoring electromagnetic signals in brain slices or cardiac tissues seems very promising.


Sign in / Sign up

Export Citation Format

Share Document