scholarly journals Effectiveness of Cover Crop Termination Methods on No-Till Cantaloupe

Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 66
Author(s):  
Ted S. Kornecki ◽  
Corey M. Kichler

In a no-till system, there are many different methods available for terminating cover crops. Mechanical termination, utilizing rolling and crimping technology, is one method that injures the plant without cutting the stems. Another popular and commercially available method is mowing, but this can cause problems with cover crop re-growth and loose residue interfering with the planter during cash crop planting. A field experiment was conducted over three growing seasons in northern Alabama to determine the effects of different cover crops and termination methods on cantaloupe yield in a no-till system. Crimson clover, cereal rye, and hairy vetch cover crops were terminated using two different roller-crimpers, including a two-stage roller-crimper for four-wheel tractors and a powered roller-crimper for a two-wheel walk-behind tractor. Cover crop termination rates were evaluated one, two, and three weeks after termination. Three weeks after rolling, a higher termination rate was found for flail mowing (92%) compared to lower termination rates for a two-stage roller (86%) and powered roller-crimper (85%), while the control termination rate was only 49%. There were no significant differences in cantaloupe yield among the rolling treatments, which averaged 38,666 kg ha−1. However, yields were higher for cereal rye and hairy vetch cover crops (41,785 kg ha−1 and 42,000 kg ha−1) compared to crimson clover (32,213 kg ha−1).

2018 ◽  
Vol 32 (3) ◽  
pp. 236-243 ◽  
Author(s):  
Matheus G. Palhano ◽  
Jason K. Norsworthy ◽  
Tom Barber

AbstractResearch was conducted to evaluate the sensitivity of cover crops to a low rate of soil-applied herbicides and investigate the likelihood of herbicide carryover to fall-seeded cover crops following an irrigated corn crop. In the sensitivity study, herbicides were applied at a 1/16×rate (to simulate four half-lives) 1 d after cover crop planting, whereas for the carryover study residual herbicides were applied at a 2×rate at the maximum label corn height or growth stage and cover crops sown immediately after corn harvest. In the sensitivity experiment, atrazine, diuron, fluridone, fomesafen, metribuzin, pyrithiobac, and sulfentrazone reduced emergence of the leguminous cover crops Austrian winterpea, crimson clover, and hairy vetch. However, reduced biomass production of leguminous cover crops in the spring was only observed for atrazine, fluridone, and pyrithiobac. For rapeseed, atrazine, flumioxazin, fluridone, pyrithiobac, pyroxasulfone, sulfentrazone, and tembotrione reduced emergence, but biomass production was reduced only by atrazine and fluridone. Conversely, wheat, cereal rye, barley, oats, and triticale were not affected by soil-applied herbicides. Barley was the only cereal cover crop that showed biomass reduction due to the application of flumioxazin, fluridone, mesotrione,S-metalochlor, and sulfentrazone. In the carryover study, with the exception of crimson clover, Austrian winterpea, cereal rye, hairy vetch, rapeseed, and wheat showed no negative affect on biomass production following a 2×rate of postemergence-applied residual herbicide in corn.


2017 ◽  
Vol 31 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Cody D. Cornelius ◽  
Kevin W. Bradley

The recent interest in cover crops as component of Midwest corn and soybean production systems has led to the need for additional research, including the effects of residual corn and soybean herbicide treatments on fall cover crop establishment. Field studies were conducted in 2013, 2014, and 2015 in Columbia, Missouri to investigate the effects of common residual herbicides applied in corn and soybean on establishment of winter wheat, tillage radish, cereal rye, crimson clover, winter oat, Austrian winter pea, Italian ryegrass, and hairy vetch. Cover crops were evaluated for stand and biomass reduction 28 d after emergence (DAE). Rainfall from herbicide application to cover crop seeding date was much greater in 2014 and 2015, which resulted in less carryover in these years compared to 2013. When averaged across all herbicides evaluated in these experiments, the general order of sensitivity of cover crops to herbicide carryover, from greatest to least was Austrian winter pea=crimson clover>oilseed radish>Italian ryegrass>hairy vetch>wheat >winter oat>cereal rye. Cereal rye had the fewest instances of biomass or stand reduction with only four out of the 27 herbicides adversely effecting establishment. Pyroxasulfone consistently reduced Italian ryegrass and winter oat biomass at least 67% in both the corn and soybean experiments. In the soybean experiment, imazethapyr- and fomesafen-containing products resulted in severe stand and biomass reduction in both years while flumetsulam-containing products resulted in the greatest carryover symptoms in the corn experiment. Results from these experiments suggest that several commonly used corn and soybean herbicides have the potential to hinder cover crop establishment, but the severity of damage will depend on weather, cover crop species, and the specific herbicide combination.


2016 ◽  
Vol 30 (2) ◽  
pp. 415-422 ◽  
Author(s):  
Matthew S. Wiggins ◽  
Robert M. Hayes ◽  
Lawrence E. Steckel

Glyphosate-resistant (GR) weeds, especially GR Palmer amaranth, are very problematic in cotton-producing areas of the midsouthern region of the United States. Growers rely heavily on PRE residual herbicides to control Palmer amaranth since few effective POST options exist. Interest in integrating high-residue cover crops with existing herbicide programs to combat GR weeds has increased. Research was conducted in 2013 and 2014 in Tennessee to evaluate GR Palmer amaranth control when integrating cover crops and PRE residual herbicides. Cereal rye, crimson clover, hairy vetch, winter wheat, and combinations of one grass plus one legume were compared with winter weeds without a cover crop followed by fluometuron or acetochlor applied PRE. Biomass of cover crops was determined prior to termination 3 wk before planting. Combinations of grass and legume cover crops accumulated the most biomass (> 3,500 kg ha−1) but by 28 d after application (DAA) the cereal rye and wheat provided the best Palmer amaranth control. Crimson clover and hairy vetch treatments had the greatest number of Palmer amaranth. These cereal and legume blends reduced Palmer amaranth emergence by half compared to non–cover-treated areas. Fluometuron and acetochlor controlled Palmer amaranth 95 and 89%, respectively, at 14 DAA and 54 and 62%, respectively, at 28 DAA. Cover crops in combination with a PRE herbicide did not adequately control Palmer amaranth.


1990 ◽  
Vol 4 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Randall H. White ◽  
A. Douglas Worsham

Eight herbicide treatments per crop were evaluated for hairy vetch and crimson clover cover-crop control in no-till corn and cotton at two locations in North Carolina. Paraquat alone or combined with dicamba, 2,4-D, or cyanazine, and cyanazine alone, controlled clover the best in both crops. All herbicide treatments, except glyphosate alone, controlled at least 89% of hairy vetch in corn. However, only 2,4-D and cyanazine alone or combined with glyphosate controlled greater than 89% of hairy vetch in cotton. Except for poor control of hairy vetch and crimson clover by glyphosate alone, reduced legume control did not consistently decrease corn or cotton yield. Weed control was reduced in crimson clover treated with glyphosate alone, but control was similar among the remaining herbicide treatments. Effectiveness of legume control did not influence the N concentration of corn or cotton. Corn stand, height, and yield were greater in hairy vetch than in crimson clover. Seed cotton yield did not differ between vetch and clover.


2021 ◽  
pp. 1-25
Author(s):  
Zahoor A. Ganie ◽  
Amit J. Jhala

Abstract Glyphosate is the most widely used herbicide in the United States; however, concern about increasing residues of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) in soil is escalating. There is a lack of scientific literature examining the response of cover crops to soil residues of glyphosate or AMPA. The objectives of this study were to evaluate the impact of glyphosate or AMPA residues in silty clay loam soil on emergence, growth, and biomass of cover crops, including cereal rye, crimson clover, field pea, hairy vetch, and winter wheat, as well as their germination in a 0.07% (0.7 g/L) solution of AMPA or glyphosate. Greenhouse studies were conducted at the University of Nebraska-Lincoln to determine the dose response of broadleaf and grass cover crops to soil-applied glyphosate or AMPA. The results indicated that soil treated with glyphosate or AMPA up to 105 mg ae kg–1 of soil had no effect on the emergence, growth, above-ground biomass, and root biomass of any of the cover crop species tested. To evaluate the impact of AMPA or glyphosate on the seed germination of cover crop species, seeds were soaked in petri plates filled with a 0.7 g L−1 solution of AMPA or glyphosate. There was no effect of AMPA on seed germination of any of the cover crop species tested. Seed germination of crimson clover and field pea in a 0.7 g L−1 solution of glyphosate was comparable to the nontreated control; however, the germination of cereal rye, hairy vetch, and winter wheat was reduced by 48%, 75%, and 66%, respectively, compared to the nontreated control. The results suggested that glyphosate or AMPA up to 105 mg ae kg–1 in silt clay loam soil is unlikely to cause any negative effect on the evaluated cover crop species.


2019 ◽  
Vol 34 (1) ◽  
pp. 25-34
Author(s):  
Lucas S. Rector ◽  
Kara B. Pittman ◽  
Shawn C. Beam ◽  
Kevin W. Bamber ◽  
Charles W. Cahoon ◽  
...  

AbstractResidual herbicides applied to summer cash crops have the potential to injure subsequent winter annual cover crops, yet little information is available to guide growers’ choices. Field studies were conducted in 2016 and 2017 in Blacksburg and Suffolk, Virginia, to determine carryover of 30 herbicides commonly used in corn, soybean, or cotton on wheat, barley, cereal rye, oats, annual ryegrass, forage radish, Austrian winter pea, crimson clover, hairy vetch, and rapeseed cover crops. Herbicides were applied to bare ground either 14 wk before cover crop planting for a PRE timing or 10 wk for a POST timing. Visible injury was recorded 3 and 6 wk after planting (WAP), and cover crop biomass was collected 6 WAP. There were no differences observed in cover crop biomass among herbicide treatments, despite visible injury that suggested some residual herbicides have the potential to effect cover crop establishment. Visible injury on grass cover crop species did not exceed 20% from any herbicide. Fomesafen resulted in the greatest injury recorded on forage radish, with greater than 50% injury in 1 site-year. Trifloxysulfuron and atrazine resulted in greater than 20% visible injury on forage radish. Trifloxysulfuron resulted in the greatest injury (30%) observed on crimson clover in 1 site-year. Prosulfuron and isoxaflutole significantly injured rapeseed (17% to 21%). Results indicate that commonly used residual herbicides applied in the previous cash crop growing season result in little injury on grass cover crop species, and only a few residual herbicides could potentially affect the establishment of a forage radish, crimson clover, or rapeseed cover crop.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 495a-495
Author(s):  
Bharat P. Singh ◽  
Upendra M. Sainju ◽  
Wayne F. Whitehead

Cover crops are planted during winter to prevent soil erosion, improve soil quality, and supply nutrients to the subsequent spring crops. In a 2-year study, three winter cover crops were compared for their nitrogen assimilation and biomass yielding ability. The experimental design was randomized complete block replicated four times with cereal rye, hairy vetch, crimson clover, and a fallow control comprising the treatments. Cover crop roots were well distributed from 1 to 50 cm of soil depth and increased from fall to spring as temperature increased. There was greater reduction in soil inorganic N during fall and winter in cover crop plots compared to control. Early season soil NO–3 concentration was lower in rye than crimson clover or hairy vetch. The amount of N assimilated by hairy vetch and crimson clover was significantly greater than cereal rye or control. There was no difference in the biomass yield of the three cover crops during the first year, but cereal rye and crimson clover produced significantly greater biomass than hairy vetch during the second year. The results suggest that cereal rye is more suited for preventing leaching of residual N from the preceding summer crop, while the two legumes can supply more N to the following crop.


1988 ◽  
Vol 34 (3) ◽  
pp. 201-206 ◽  
Author(s):  
C. S. Rothrock ◽  
W. L. Hargrove

The influence of winter legume cover crops and of tillage on soil populations of fungal genera containing plant pathogenic species in the subsequent summer sorghum crop were examined in field studies. Legume cover crops significantly increased populations of Pythium spp. throughout the sorghum crop compared with a rye cover crop or no cover crop. This stimulation of the populations of Pythium spp. was not solely due to colonization of cover-crop residue, as populations were significantly greater at the time the legume cover crop was desiccated. Removal of aboveground residue generally decreased populations of Pythium spp. in soil. Incorporation of residue by tillage increased populations of Pythium spp. at some sampling dates. Legumes differed in the magnitude of stimulation, with hairy vetch stimulating Pythium spp. more than crimson clover. Cover crop treatments did not consistently influence soil populations of Fusarium spp., Rhizoctonia solani, Rhizoctonia-like binucleate fungi, or Macrophomina phaseolina. Macrophomina phaseolina populations were significantly greater under no tillage.


2018 ◽  
Vol 32 (3) ◽  
pp. 227-235 ◽  
Author(s):  
Matheus G. Palhano ◽  
Jason K. Norsworthy ◽  
Tom Barber

AbstractCover crop acreage has substantially increased over the last few years due to the intent of growers to capitalize on federal conservation payments and incorporate sustainable practices into agricultural systems. Despite all the known benefits, widespread adoption of cover crops still remains limited due to potential cost and management requirements. Cover crop termination is crucial, because a poorly controlled cover crop can become a weed and lessen the yield potential of the current cash crop. A field study was conducted in fall 2015 and 2016 at the Arkansas Agricultural Research and Extension Center in Fayetteville to evaluate preplant herbicide options for terminating cover crops. Glyphosate-containing treatments controlled 97% to 100% of cereal rye and wheat, but glyphosate alone controlled less than 57% of legume cover crops. The most effective way to control hairy vetch, Austrian winterpea, and crimson clover with glyphosate resulted from mixtures of glyphosate with glufosinate, 2,4-D, and dicamba. Higher rates of auxin herbicides improved control in these mixtures. Glufosinate alone or in mixture controlled legume cover crops 81% or more. Paraquat plus metribuzin was effective in terminating both cereal and legume cover crops, with control of cereal cover crops ranging from 87% to 97% and control of legumes ranging from 90% to 96%. None of these herbicides or mixtures adequately controlled rapeseed.


2019 ◽  
Vol 34 (1) ◽  
pp. 48-54
Author(s):  
Kara B. Pittman ◽  
Charles W. Cahoon ◽  
Kevin W. Bamber ◽  
Lucas S. Rector ◽  
Michael L. Flessner

AbstractCover crops provide a number of agronomic benefits, including weed suppression, which is important as cases of herbicide resistance continue to rise. To effectively suppress weeds, high cover crop biomass is needed, which necessitates later termination timing. Cover crop termination is important to mitigate potential planting issues and prevent surviving cover crop competition with cash crops. Field studies were conducted in Virginia to determine the most effective herbicide options alone or combined with glyphosate or paraquat to terminate a range of cover crop species. Results revealed that grass cover crop species were controlled (94% to 98%) by glyphosate alone 4 wk after application (WAA). Overall, legume species varied in response to the single active-ingredient treatments, and control increased with the addition of glyphosate or paraquat. Mixes with glyphosate provided better control of crimson clover and hairy vetch by 7% to 8% compared with mixes containing paraquat 4 WAA. Mix partner did not influence control of Austrian winter pea. No treatment adequately controlled rapeseed in this study, with a maximum of 58% control observed with single active-ingredient treatments and 62% control with mixes. Height reduction for all cover crop species supports visible rating data. Rapeseed should be terminated when smaller, which could negate weed suppressive benefits from this cover crop species. Growers should consider herbicide selection and termination timing in their cover crop plan to ensure effective termination.


Sign in / Sign up

Export Citation Format

Share Document