scholarly journals Climate-Based Modeling and Prediction of Rice Gall Midge Populations Using Count Time Series and Machine Learning Approaches

Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 22
Author(s):  
Santosha Rathod ◽  
Sridhar Yerram ◽  
Prawin Arya ◽  
Gururaj Katti ◽  
Jhansi Rani ◽  
...  

The Asian rice gall midge (Orseolia oryzae (Wood-Mason)) is a major insect pest in rice cultivation. Therefore, development of a reliable system for the timely prediction of this insect would be a valuable tool in pest management. In this study, occurring between the period from 2013–2018: (i) gall midge populations were recorded using a light trap with an incandescent bulb, and (ii) climatological parameters (air temperature, air relative humidity, rainfall and insulations) were measured at four intensive rice cropping agroecosystems that are endemic for gall midge incidence in India. In addition, weekly cumulative trapped gall midge populations and weekly averages of climatological data were subjected to count time series (Integer-valued Generalized Autoregressive Conditional Heteroscedastic—INGARCH) and machine learning (Artificial Neural Network—ANN, and Support Vector Regression—SVR) models. The empirical results revealed that the ANN with exogenous variable (ANNX) model outperformed INGRACH with exogenous variable (INGRCHX) and SVR with exogenous variable (SVRX) models in the prediction of gall midge populations in both training and testing data sets. Moreover, the Diebold–Mariano (DM) test confirmed the significant superiority of the ANNX model over INGARCHX and SVRX models in modeling and predicting rice gall midge populations. Utilizing the presented efficient early warning system based on a robust statistical model to predict the build-up of gall midge population could greatly contribute to the design and implementation of both proactive and more sustainable site-specific pest management strategies to avoid significant rice yield losses.

2021 ◽  
Vol 13 (3) ◽  
pp. 67
Author(s):  
Eric Hitimana ◽  
Gaurav Bajpai ◽  
Richard Musabe ◽  
Louis Sibomana ◽  
Jayavel Kayalvizhi

Many countries worldwide face challenges in controlling building incidence prevention measures for fire disasters. The most critical issues are the localization, identification, detection of the room occupant. Internet of Things (IoT) along with machine learning proved the increase of the smartness of the building by providing real-time data acquisition using sensors and actuators for prediction mechanisms. This paper proposes the implementation of an IoT framework to capture indoor environmental parameters for occupancy multivariate time-series data. The application of the Long Short Term Memory (LSTM) Deep Learning algorithm is used to infer the knowledge of the presence of human beings. An experiment is conducted in an office room using multivariate time-series as predictors in the regression forecasting problem. The results obtained demonstrate that with the developed system it is possible to obtain, process, and store environmental information. The information collected was applied to the LSTM algorithm and compared with other machine learning algorithms. The compared algorithms are Support Vector Machine, Naïve Bayes Network, and Multilayer Perceptron Feed-Forward Network. The outcomes based on the parametric calibrations demonstrate that LSTM performs better in the context of the proposed application.


Author(s):  
Gudipally Chandrashakar

In this article, we used historical time series data up to the current day gold price. In this study of predicting gold price, we consider few correlating factors like silver price, copper price, standard, and poor’s 500 value, dollar-rupee exchange rate, Dow Jones Industrial Average Value. Considering the prices of every correlating factor and gold price data where dates ranging from 2008 January to 2021 February. Few algorithms of machine learning are used to analyze the time-series data are Random Forest Regression, Support Vector Regressor, Linear Regressor, ExtraTrees Regressor and Gradient boosting Regression. While seeing the results the Extra Tree Regressor algorithm gives the predicted value of gold prices more accurately.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7417
Author(s):  
Alex J. Hope ◽  
Utkarsh Vashisth ◽  
Matthew J. Parker ◽  
Andreas B. Ralston ◽  
Joshua M. Roper ◽  
...  

Concussion injuries remain a significant public health challenge. A significant unmet clinical need remains for tools that allow related physiological impairments and longer-term health risks to be identified earlier, better quantified, and more easily monitored over time. We address this challenge by combining a head-mounted wearable inertial motion unit (IMU)-based physiological vibration acceleration (“phybrata”) sensor and several candidate machine learning (ML) models. The performance of this solution is assessed for both binary classification of concussion patients and multiclass predictions of specific concussion-related neurophysiological impairments. Results are compared with previously reported approaches to ML-based concussion diagnostics. Using phybrata data from a previously reported concussion study population, four different machine learning models (Support Vector Machine, Random Forest Classifier, Extreme Gradient Boost, and Convolutional Neural Network) are first investigated for binary classification of the test population as healthy vs. concussion (Use Case 1). Results are compared for two different data preprocessing pipelines, Time-Series Averaging (TSA) and Non-Time-Series Feature Extraction (NTS). Next, the three best-performing NTS models are compared in terms of their multiclass prediction performance for specific concussion-related impairments: vestibular, neurological, both (Use Case 2). For Use Case 1, the NTS model approach outperformed the TSA approach, with the two best algorithms achieving an F1 score of 0.94. For Use Case 2, the NTS Random Forest model achieved the best performance in the testing set, with an F1 score of 0.90, and identified a wider range of relevant phybrata signal features that contributed to impairment classification compared with manual feature inspection and statistical data analysis. The overall classification performance achieved in the present work exceeds previously reported approaches to ML-based concussion diagnostics using other data sources and ML models. This study also demonstrates the first combination of a wearable IMU-based sensor and ML model that enables both binary classification of concussion patients and multiclass predictions of specific concussion-related neurophysiological impairments.


Author(s):  
Manuel Martín-Merino Acera

Electricity load forecasting has become increasingly important due to the strong impact on the operational efficiency of the power system. However, the accurate load prediction remains a challenging task due to several issues such as the nonlinear character of the time series or the seasonal patterns it exhibits. A large variety of techniques have been proposed to this aim, such as statistical models, fuzzy systems or artificial neural networks. The Support Vector Machines (SVM) have been widely applied to the electricity load forecasting with remarkable results. In this chapter, the authors study the performance of the classical SVM in the problem of electricity load forecasting. Next, an algorithm is developed that takes advantage of the local character of the time series. The method proposed first splits the time series into homogeneous regions using the Self Organizing Maps (SOM) and next trains a Support Vector Machine (SVM) locally in each region. The methods presented have been applied to the prediction of the maximum daily electricity demand. The properties of the time series are analyzed in depth. All the models are compared rigorously through several objective functions. The experimental results show that the local model proposed outperforms several statistical and machine learning forecasting techniques.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2205
Author(s):  
Luis Alfonso Menéndez García ◽  
Fernando Sánchez Lasheras ◽  
Paulino José García Nieto ◽  
Laura Álvarez de Prado ◽  
Antonio Bernardo Sánchez

Benzene is a pollutant which is very harmful to our health, so models are necessary to predict its concentration and relationship with other air pollutants. The data collected by eight stations in Madrid (Spain) over nine years were analyzed using the following regression-based machine learning models: multivariate linear regression (MLR), multivariate adaptive regression splines (MARS), multilayer perceptron neural network (MLP), support vector machines (SVM), autoregressive integrated moving-average (ARIMA) and vector autoregressive moving-average (VARMA) models. Benzene concentration predictions were made from the concentration of four environmental pollutants: nitrogen dioxide (NO2), nitrogen oxides (NOx), particulate matter (PM10) and toluene (C7H8), and the performance measures of the model were studied from the proposed models. In general, regression-based machine learning models are more effective at predicting than time series models.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Hye-Jin Kim ◽  
Sung Min Park ◽  
Byung Jin Choi ◽  
Seung-Hyun Moon ◽  
Yong-Hyuk Kim

We propose three quality control (QC) techniques using machine learning that depend on the type of input data used for training. These include QC based on time series of a single weather element, QC based on time series in conjunction with other weather elements, and QC using spatiotemporal characteristics. We performed machine learning-based QC on each weather element of atmospheric data, such as temperature, acquired from seven types of IoT sensors and applied machine learning algorithms, such as support vector regression, on data with errors to make meaningful estimates from them. By using the root mean squared error (RMSE), we evaluated the performance of the proposed techniques. As a result, the QC done in conjunction with other weather elements had 0.14% lower RMSE on average than QC conducted with only a single weather element. In the case of QC with spatiotemporal characteristic considerations, the QC done via training with AWS data showed performance with 17% lower RMSE than QC done with only raw data.


2014 ◽  
Vol 1051 ◽  
pp. 1009-1015 ◽  
Author(s):  
Ya Li Ning ◽  
Xin You Wang ◽  
Xi Ping He

Support Vector Machines (SVM), which is a new generation learning method based on advances in statistical learning theory, is characterized by the use of many standard technologies of machine learning such as maximal margin hyperplane, Mercel kernels and the quadratic programming. Because the best performance is obtained in many currently challenging applications, SVM has sustained wide attention, and has been become the standard tools of machine learning and data mining. But as a developing technology, SVM still have some problems and its applications are limited. In this paper, SVM and its applications in chaotic time series including predicting chaotic time series, focus on comparison in regression type selection, and kernel type selection in the same regression machine type.


Author(s):  
Stephane Ghozzi ◽  
Benedikt Zacher ◽  
Alexander Ullrich

ObjectiveBy systematically scoring algorithms and integrating outbreak data through statistical learning, evaluate and improve the performance of automated infectious-disease-outbreak detection. The improvements should be directly relevant to the epidemiological practice. A broader objective is to explore the usefulness of machine-learning approaches in epidemiology.IntroductionWithin the traditional surveillance of notifiable infectious diseases in Germany, not only are individual cases reported to the Robert Koch Institute, but also outbreaks themselves are recorded: A label is assigned by epidemiologists to each case, indicating whether it is part of an outbreak and of which. This expert knowledge represents, in the language of machine leaning, a "ground truth" for the algorithmic task of detecting outbreaks from a stream of surveillance data. The integration of this kind of information in the design and evaluation of algorithms is called supervised learning.MethodsReported cases were aggregated weekly and divided into two count time series, one for endemic (not part of an outbreak) and one for epidemic cases. Two new algorithms were developed for the analysis of such time series: farringtonOutbreak is an adaptation of the standard method farringtonFlexible as implemented in the surveillance R package: It trains on endemic case counts but detects anomalies on total case counts. The second algorithm is hmmOutbreak, which is based on a hidden Markov model (HMM): A binary hidden state indicates whether an outbreak was reported in a given week, the transition matrix for this state is learned from the outbreak data and this state is integrated as factor in a generalised linear model of the total case count. An explicit probability of being in a state of outbreak is then computed for each week (one-week ahead) and a signal is generated if it is higher than a user-defined threshold.To evaluate performance, we framed outbreak detection as a simple binary classification problem: Is there an outbreak in a given week, yes or no? Was a signal generated for this week, yes or no? One can thus count, for each time series, the true positives (outbreak data and signals agree), false positives, true negatives and false negatives. From those, classical performance scores can be computed, such as sensitivity, specificity, precision, F-score or area under the ROC curve (AUC).For the evaluation with real-word data we used time series of reported cases of salmonellosis and campylobacteriosis for each of the 412 German counties over 9 years. We also ran simple simulations with different parameter sets, generating count time series and outbreaks with the sim.pointSource function of the surveillance R package.ResultsWe have developed a supervised-learning framework for outbreak detection based on reported infections and outbreaks, proposing two algorithms and an evaluation method. hmmOutbreak performs overall much better than the standard farringtonFlexible, with e.g. a 60% improvement in sensitivity (0.5 compared to 0.3) at a fixed specificity of 0.9. The results were confirmed by simulations. Furthermore, the computation of explicit outbreak probabilities allows a better and clearer interpretation of detection results than the usual testing of the null hypothesis "is endemic".ConclusionsMethods of machine learning can be usefully applied in the context of infectious-disease surveillance. Already a simple HMM shows large improvements and better interpretability: More refined methods, in particular semi-supervised approaches, look thus very promising. The systematic integration of available expert knowledge, in this case the recording of outbreaks, allows an evaluation of algorithmic performance that is of direct relevance for the epidemiological practice, in contrast to the usual intrinsic statistical metrics. Beyond that, this knowledge can be readily used to improve that performance and, in the future, gain insights in outbreak dynamics. Moreover, other types of labels will be similarly integrated in automated surveillance analyses, e.g. user feedback on whether a signal was relevant (reinforcement learning) or messages on specialised internet platforms that were found to be useful warnings of international epidemic events.


Author(s):  
E. Elmoussaoui ◽  
A. Moumni ◽  
A. Lahrouni

Abstract. Forest tree species mapping became easier due to the global availability of high spatio-temporal resolution images acquired from multiple sensors. Such data can lead to better forest resources management. Machine-learning pixel based analysis was performed to multi-spectral Sentinel-2 and Synthetic Aperture Radar Sentinel-1 time series integrated with Digital Elevation Model acquired over Argan forest of Essaouira province, Morocco. The argan tree constitutes a fundamental resource for the populations of this arid area of Morocco. This research aims to use the potential of the combination of multi-sensor data to detect, map and identify argan tree from other forest species using three Machine Learning algorithms: Support Vector Machine (SVM), Maximum Likelihood (ML) and Artificial Neural Networks (ANN). The exploited datasets included Sentinel-1 (S1), Sentinel-2 (S2) time series, Shuttle Radar Topographic Missing Digital Elevation Model (DEM) layer and Ground truth data. We tested several sets of scenarios, including single S1 derived features, single S2 time series and combined S1 and S2 derived layers with DEM scene acquisition. The best results (overall accuracy OA and Kappa coefficient K) obtained from time series of optical data (NDVI): OA = 86.87%, K = 0.84, from time series of SAR data (VV+VH/VV): OA = 45.90%, K = 0.36, from the combination of optical and SAR time series (NDVI+VH+DEM): OA = 93.01%, K = 0.914, and from the fusion of optical time series and DEM layer (NDVI+DEM): OA = 93.25%, K = 0.91. These results indicate that single-sensor (S2) integrated with the DEM layer led us to obtain the highest classification results.


2020 ◽  
Vol 12 (16) ◽  
pp. 2655 ◽  
Author(s):  
Hugo Crisóstomo de Castro Filho ◽  
Osmar Abílio de Carvalho Júnior ◽  
Osmar Luiz Ferreira de Carvalho ◽  
Pablo Pozzobon de Bem ◽  
Rebeca dos Santos de Moura ◽  
...  

The Synthetic Aperture Radar (SAR) time series allows describing the rice phenological cycle by the backscattering time signature. Therefore, the advent of the Copernicus Sentinel-1 program expands studies of radar data (C-band) for rice monitoring at regional scales, due to the high temporal resolution and free data distribution. Recurrent Neural Network (RNN) model has reached state-of-the-art in the pattern recognition of time-sequenced data, obtaining a significant advantage at crop classification on the remote sensing images. One of the most used approaches in the RNN model is the Long Short-Term Memory (LSTM) model and its improvements, such as Bidirectional LSTM (Bi-LSTM). Bi-LSTM models are more effective as their output depends on the previous and the next segment, in contrast to the unidirectional LSTM models. The present research aims to map rice crops from Sentinel-1 time series (band C) using LSTM and Bi-LSTM models in West Rio Grande do Sul (Brazil). We compared the results with traditional Machine Learning techniques: Support Vector Machines (SVM), Random Forest (RF), k-Nearest Neighbors (k-NN), and Normal Bayes (NB). The developed methodology can be subdivided into the following steps: (a) acquisition of the Sentinel time series over two years; (b) data pre-processing and minimizing noise from 3D spatial-temporal filters and smoothing with Savitzky-Golay filter; (c) time series classification procedures; (d) accuracy analysis and comparison among the methods. The results show high overall accuracy and Kappa (>97% for all methods and metrics). Bi-LSTM was the best model, presenting statistical differences in the McNemar test with a significance of 0.05. However, LSTM and Traditional Machine Learning models also achieved high accuracy values. The study establishes an adequate methodology for mapping the rice crops in West Rio Grande do Sul.


Sign in / Sign up

Export Citation Format

Share Document