scholarly journals In Vitro Antibacterial Activity and Mechanism of Vanillic Acid against Carbapenem-Resistant Enterobacter cloacae

Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 220 ◽  
Author(s):  
Weidong Qian ◽  
Yuting Fu ◽  
Miao Liu ◽  
Ting Wang ◽  
Jianing Zhang ◽  
...  

Vanillic acid (VA) is a flavoring agent found in edible plants and fruits. Few recent studies exhibited robust antibacterial activity of VA against several pathogen microorganisms. However, little was reported about the effect of VA on carbapenem-resistant Enterobacter cloacae (CREC). The purpose of the current study was to assess in vitro antimicrobial and antibiofilm activities of VA against CREC. Here, minimum inhibitory concentrations (MIC) of VA against CREC was determined via gradient diffusion method. Furthermore, the antibacterial mode of VA against CREC was elucidated by measuring changes in intracellular adenosine triphosphate (ATP) concentration, intracellular pH (pHin), cell membrane potential and membrane integrity. In addition, antibiofilm formation of VA was measured by crystal violet assay and visualized with field emission scanning electron microscopy (FESEM) and confocal laser scanning microscopy (CLSM). The results showed that MIC of VA against E. cloacae was 600 μg/mL. VA was capable of inhibiting the growth of CREC and destroying the cell membrane integrity of CREC, as confirmed by the decrease of intracellular ATP concentration, pHin and membrane potential as well as distinctive variation in cellular morphology. Moreover, crystal violet staining, FESEM and CLSM results indicated that VA displayed robust inhibitory effects on biofilm formation of CREC and inactivated biofilm-related CREC cells. These findings revealed that VA exhibits potent antibacterial activity against CREC, and thus has potential to be exploited as a natural preservative to control the CREC associated infections.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9543
Author(s):  
Qian Zhang ◽  
Yansi Lyu ◽  
Jingkai Huang ◽  
Xiaodong Zhang ◽  
Na Yu ◽  
...  

Background Sanguinarine (SAG), a benzophenanthridine alkaloid, occurs in Papaveraceas, Berberidaceae and Ranunculaceae families. Studies have found that SAG has antioxidant, anti-inflammatory, and antiproliferative activities in several malignancies and that it exhibits robust antibacterial activities. However, information reported on the action of SAG against Providencia rettgeri is limited in the literature. Therefore, the present study aimed to evaluate the antimicrobial and antibiofilm activities of SAG against P. rettgeri in vitro. Methods The agar dilution method was used to determine the minimum inhibitory concentration (MIC) of SAG against P. rettgeri. The intracellular ATP concentration, intracellular pH (pHin), and cell membrane integrity and potential were measured. Confocal laser scanning microscopy (CLSM), field emission scanning electron microscopy (FESEM), and crystal violet staining were used to measure the antibiofilm formation of SAG. Results The MIC of SAG against P. rettgeri was 7.8 μg/mL. SAG inhibited the growth of P. rettgeri and destroyed the integrity of P. rettgeri cell membrane, as reflected mainly through the decreases in the intracellular ATP concentration, pHin and cell membrane potential and significant changes in cellular morphology. The findings of CLSM, FESEM and crystal violet staining indicated that SAG exhibited strong inhibitory effects on the biofilm formation of P. rettgeri and led to the inactivity of biofilm-related P. rettgeri cells.


2017 ◽  
Vol 62 (2) ◽  
Author(s):  
Mojgan Sabet ◽  
Ziad Tarazi ◽  
Debora Rubio-Aparicio ◽  
Thomas G. Nolan ◽  
Jonathan Parkinson ◽  
...  

ABSTRACT The objective of these studies was to evaluate the exposures of meropenem and vaborbactam that would produce antibacterial activity and prevent resistance development in carbapenem-resistant Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae strains when tested at an inoculum of 108 CFU/ml. Thirteen K. pneumoniae isolates, three Enterobacter cloacae isolates, and one Escherichia coli isolate were examined in an in vitro hollow-fiber model over 32 h. Simulated dosage regimens of 1 to 2 g of meropenem with 1 to 2 g of vaborbactam, with meropenem administered every 8 h by a 3-h infusion based on phase 1 or phase 3 patient pharmacokinetic data, were studied in the model. A dosage of 2 g of meropenem in combination with 2 g of vaborbactam was bactericidal against K. pneumoniae, E. cloacae, and E. coli strains, with meropenem-vaborbactam MICs of up to 8 mg/liter. When the vaborbactam exposure was adjusted to the levels observed in patients enrolled in phase 3 trials (24-h free AUC, ∼550 mg · h/liter, versus 320 mg · h/liter in the phase 1 studies), 2 g of meropenem with 2 g of vaborbactam was also bactericidal against strains with meropenem-vaborbactam MICs of 16 mg/liter. In addition, this level of vaborbactam also suppressed the development of resistance observed using phase 1 exposures. In this pharmacodynamic model, exposures similar to 2 g of meropenem in combination with 2 g of vaborbactam administered every 8 h by a 3-h infusion in phase 3 trials produced antibacterial activity and suppressed the development of resistance against carbapenem-resistant KPC-producing strains of Enterobacteriaceae.


2014 ◽  
Vol 63 (10) ◽  
pp. 1316-1323 ◽  
Author(s):  
Alima Gharout-Sait ◽  
Samer-Ahmed Alsharapy ◽  
Lucien Brasme ◽  
Abdelaziz Touati ◽  
Rachida Kermas ◽  
...  

Ten carbapenem-resistant Enterobacteriaceae (eight Klebsiella pneumoniae isolates and two Enterobacter cloacae) isolates from Yemen were investigated using in vitro antimicrobial susceptibility testing, phenotypic carbapenemase detection, multilocus sequence typing (MLST) and replicon typing. Carbapenemase, extended-spectrum β-lactamase (ESBL) and plasmid-mediated quinolone resistance determinant genes were identified using PCR and sequencing. All of the 10 carbapenem-resistant Enterobacteriaceae were resistant to β-lactams, tobramycin, ciprofloxacin and cotrimoxazole. Imipenem, doripenem and meropenem MICs ranged from 2 to >32 mg l−1 and ertapenem MICs ranged from 6 to >32 mg l−1. All of the K. pneumoniae isolates showed ESBL activity in phenotypic tests. Genes encoding bla NDM were detected in all strains. All K. pneumoniae strains produced CTX-M-15 ESBL and SHV β-lactamases. TEM-1 β-lactamase was detected in seven isolates. Nine isolates were qnr positive including QnrB1, QnrA1 and QnrS1, and six isolates produced AAC-6′-Ib-cr. MLST identified five different sequence types (STs): ST1399, ST147, ST29, ST405 and ST340. Replicon typing showed the presence of IncFII1K plasmids in four transformants. To the best of our knowledge, this is the first report of NDM-1-producing Enterobacteriaceae isolates in Yemen.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad H. Khan ◽  
John J. Walsh ◽  
Jelena M. Mihailović ◽  
Sandeep K. Mishra ◽  
Daniel Coman ◽  
...  

AbstractUnder normal conditions, high sodium (Na+) in extracellular (Na+e) and blood (Na+b) compartments and low Na+ in intracellular milieu (Na+i) produce strong transmembrane (ΔNa+mem) and weak transendothelial (ΔNa+end) gradients respectively, and these manifest the cell membrane potential (Vm) as well as blood–brain barrier (BBB) integrity. We developed a sodium (23Na) magnetic resonance spectroscopic imaging (MRSI) method using an intravenously-administered paramagnetic polyanionic agent to measure ΔNa+mem and ΔNa+end. In vitro 23Na-MRSI established that the 23Na signal is intensely shifted by the agent compared to other biological factors (e.g., pH and temperature). In vivo 23Na-MRSI showed Na+i remained unshifted and Na+b was more shifted than Na+e, and these together revealed weakened ΔNa+mem and enhanced ΔNa+end in rat gliomas (vs. normal tissue). Compared to normal tissue, RG2 and U87 tumors maintained weakened ΔNa+mem (i.e., depolarized Vm) implying an aggressive state for proliferation, whereas RG2 tumors displayed elevated ∆Na+end suggesting altered BBB integrity. We anticipate that 23Na-MRSI will allow biomedical explorations of perturbed Na+ homeostasis in vivo.


2005 ◽  
Vol 187 (2) ◽  
pp. 729-738 ◽  
Author(s):  
Elizabeth A. Marcus ◽  
Amiel P. Moshfegh ◽  
George Sachs ◽  
David R. Scott

ABSTRACT The role of the periplasmic α-carbonic anhydrase (α-CA) (HP1186) in acid acclimation of Helicobacter pylori was investigated. Urease and urea influx through UreI have been shown to be essential for gastric colonization and for acid survival in vitro. Intrabacterial urease generation of NH3 has a major role in regulation of periplasmic pH and inner membrane potential under acidic conditions, allowing adequate bioenergetics for survival and growth. Since α-CA catalyzes the conversion of CO2 to HCO3 −, the role of CO2 in periplasmic buffering was studied using an α-CA deletion mutant and the CA inhibitor acetazolamide. Western analysis confirmed that α-CA was bound to the inner membrane. Immunoblots and PCR confirmed the absence of the enzyme and the gene in the α-CA knockout. In the mutant or in the presence of acetazolamide, there was an ∼3 log10 decrease in acid survival. In acid, absence of α-CA activity decreased membrane integrity, as observed using membrane-permeant and -impermeant fluorescent DNA dyes. The increase in membrane potential and cytoplasmic buffering following urea addition to wild-type organisms in acid was absent in the α-CA knockout mutant and in the presence of acetazolamide, although UreI and urease remained fully functional. At low pH, the elevation of cytoplasmic and periplasmic pH with urea was abolished in the absence of α-CA activity. Hence, buffering of the periplasm to a pH consistent with viability depends not only on NH3 efflux from the cytoplasm but also on the conversion of CO2, produced by urease, to HCO3 − by the periplasmic α-CA.


2006 ◽  
Vol 8 (2) ◽  
pp. 160
Author(s):  
Aswan Thamin ◽  
Chairulwan Umar ◽  
Darussadah Paransa

Grapsus albolineatus is one of marine crustaceans which have carotenoid (astaxanthin) pigment. This research was conducted to analyze carotenoids (astaxanthin) extracted from G. albolineatus, and evaluate their in vitro antibacterial activity. The research was done in March-July 2002. Samples were collected from Manado Gulf, North Sulawesi. The result indicated that the carapace contained 4 carotenoids namely ß-caroten, ecinenon, astaxanthin diester, and astaxanthin monoester. In addition, the epidermis contained free astaxanthin. In vitro antibacterial activity test indicated that astaxanthin had low bacteriostatic activity against Psedomonas aeruginosa, Enterobacter cloacae, Staphylococcus aureus, and Proteus stuartii.


2019 ◽  
Vol 83 (4) ◽  
pp. 576-583 ◽  
Author(s):  
WEIDONG QIAN ◽  
MIN YANG ◽  
TING WANG ◽  
ZHAOHUAN SUN ◽  
MIAO LIU ◽  
...  

ABSTRACT Many studies have evaluated the antimicrobial activity of natural products against various microorganisms, but to our knowledge there have been no studies of the possible use of natural products for their antimicrobial activity against Enterobacter hormaechei. In this study, we investigated vanillic acid (VA) for its antimicrobial activities and its modes of action against carbapenem-resistant E. hormaechei (CREH). The MIC of VA against CREH was determined by the agar diffusion method. The antibacterial action of VA against CREH was elucidated by measuring variations in intracellular ATP concentration, intracellular pH, membrane potential, and cell morphology. Moreover, the efficacy of VA against biofilm formation and VA damage to CREH cells embedded in biofilms were further explored. Our results show that VA was effective against CREH with a MIC of 0.8 mg/mL. VA could rupture the cell membrane integrity of CREH, as measured by a decrease of intracellular ATP, pH, and membrane potential, along with distinctive alternations in cell morphology. In addition, VA exerted a remarkable inhibitory effect on the biofilm formation of CREH and also killed CREH cells within biofilms. These findings show that VA has a potent antibacterial and antibiofilm activity against CREH and, hence, has the potential to be used clinically as a novel candidate agent to treat CREH infections and in the food industry as a food preservative and surface disinfectant. HIGHLIGHTS


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S314-S314
Author(s):  
Alita Miller ◽  
Sarah McLeod ◽  
Tarun Mathur ◽  
Ian Morrissey

Abstract Background The incidence of infections caused by multidrug-resistant Acinetobacter baumannii is increasing at an alarming rate in Southeast Asia and other parts of the world. Sulbactam (SUL) has intrinsic antibacterial activity against A. baumannii; however, the prevalence of β-lactamases in this species has limited its therapeutic use. Durlobactam (ETX2514, DUR) is a novel β-lactamase inhibitor with broad-spectrum activity against Ambler class A, C and D β-lactamases. DUR restores SUL in vitro activity against multidrug-resistant A. baumannii. Against >3,600 globally diverse, clinical isolates from 2012–2017, addition of 4 mg/L DUR reduced the SUL MIC90 from >32 to 2 mg/L. SUL-DUR is currently in Phase 3 clinical development for the treatment of infections caused by carbapenem-resistant Acinetobacter spp.The goal of this study was to determine the activity of SUL-DUR and comparator antibiotics (amikacin (AMK), ampicillin-sulbactam (AMP-SUL), cefoperazone-sulbactam (CFP-SUL) and meropenem (MEM)) against A. baumannii isolated from hospitalized patients in India. Methods A total of 121 clinical A. baumannii isolates from multiple hospital settings and infection sources were collected between 2016–2019 from six geographically diverse hospitals in India. Species identification was performed by MALDI-TOF. Susceptibility of these isolates to SUL-DUR (10µg/10µg) and comparator antibiotics was determined by disk diffusion using CLSI methodology and interpretive criteria, except for CFP-SUL, for which resistance was defined using breakpoints from the CFP-SUL package insert. Results As shown in Table 1, resistance of this collection of isolates to marketed agents was extremely high. In contrast, based on preliminary breakpoint criteria, only 11.5% of isolates were resistant to SUL-DUR. Conclusion The in vitro antibacterial activity of SUL-DUR was significantly more potent than comparator agents against multidrug-resistant A. baumannii isolates collected from diverse sites in India. These data support the continued development of SUL-DUR for the treatment of antibiotic-resistant infections caused by A. baumannii. Disclosures All authors: No reported disclosures.


Sign in / Sign up

Export Citation Format

Share Document