scholarly journals Harnessing the Potential of Killers and Altruists within the Microbial Community: A Possible Alternative to Antibiotic Therapy?

Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 230 ◽  
Author(s):  
Larisa N. Ikryannikova ◽  
Leonid K. Kurbatov ◽  
Surinder M. Soond ◽  
Andrey A. Zamyatnin

In the context of a post-antibiotic era, the phenomenon of microbial allolysis, which is defined as the partial killing of bacterial population induced by other cells of the same species, may take on greater significance. This phenomenon was revealed in some bacterial species such as Streptococcus pneumoniae and Bacillus subtilis, and has been suspected to occur in some other species or genera, such as enterococci. The mechanisms of this phenomenon, as well as its role in the life of microbial populations still form part of ongoing research. Herein, we describe recent developments in allolysis in the context of its practical benefits as a form of cell death that may give rise to developing new strategies for manipulating the life and death of bacterial communities. We highlight how such findings may be viewed with importance and potential within the fields of medicine, biotechnology, and pharmacology.

2021 ◽  
Vol 13 (11) ◽  
pp. 6101
Author(s):  
Rishi Sharma ◽  
Henning Winker ◽  
Polina Levontin ◽  
Laurence Kell ◽  
Dan Ovando ◽  
...  

Catch-only models (COMs) have been the focus of ongoing research into data-poor stock assessment methods. Two of the most recent models that are especially promising are (i) CMSY+, the latest refined version of CMSY that has progressed from Catch-MSY, and (ii) SRA+ (Stock Reduction Analysis Plus) a recent developments in field. Comparing COMs and evaluating their relative performance is essential for determining the state of regional and global fisheries that may be lacking necessary data that would be required to run traditional assessment models. In this paper we interrogate how performance of COMs can be improved by incorporating additional sources of information. We evaluate the performance of COMs on a dataset of 48 data-rich ICES (International Council for the Exploration of Seas) stock assessments. As one measure of performance, we consider the ability of the model to correctly classify stock status using FAO’s 3-tier classification that is also used for reporting on sustainable development goals to the UN. Both COMs showed notable bias when run with their inbuilt default heuristics, but as the quality of prior information increased, classification rates for the terminal year improved substantially. We conclude that although further COM refinements show some potential, most promising is the ongoing research into developing biomass or fishing effort priors for COMs in order to be able to reliably track stock status for the majority of the world’s fisheries currently lacking stock assessments.


Religions ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 622 ◽  
Author(s):  
Anders

The commercialization of Buddhist philosophy has led to decontextualization and indoctrinating issues across groups, as well as abuse and trauma in that context. Methodologically, from an interdisciplinary approach, based on the current situation in international Buddhist groups and citations of victims from the ongoing research, the psychological mechanisms of rationalizing and silencing trauma were analyzed. The results show how supposedly Buddhist terminology and concepts are used to rationalize and justify economic, psychological and physical abuse. This is discussed against the background of psychological mechanisms of silencing trauma and the impact of ignoring the unconscious in that particular context. Inadequate consideration regarding the teacher–student relationship, combined with an unreflective use of Tibetan honorary titles and distorted conceptualizations of methods, such as the constant merging prescribed in so-called 'guru yoga', resulted in giving up self-responsibility and enhanced dependency. These new concepts, commercialized as 'karma purification' and 'pure view', have served to rationalize and conceal abuse, as well as to isolate the victims. Therefore, we are facing societal challenges, in terms of providing health and economic care to the victims and implementing preventive measures. This use of language also impacts on scientific discourse and Vajrayāna itself, and will affect many future generations.


2020 ◽  
Vol 96 (3) ◽  
Author(s):  
Gavin J Fenske ◽  
Sudeep Ghimire ◽  
Linto Antony ◽  
Jane Christopher-Hennings ◽  
Joy Scaria

ABSTRACT Bacterial communities resident in the hindgut of pigs, have profound impacts on health and disease. Investigations into the pig microbiome have utilized either culture-dependent, or far more commonly, culture-independent techniques using next generation sequencing. We contend that a combination of both approaches generates a more coherent view of microbiome composition. In this study, we surveyed the microbiome of Tamworth breed and feral pigs through the integration high throughput culturing and shotgun metagenomics. A single culture medium was used for culturing. Selective screens were added to the media to increase culture diversity. In total, 46 distinct bacterial species were isolated from the Tamworth and feral samples. Selective screens successfully shifted the diversity of bacteria on agar plates. Tamworth pigs are highly dominated by Bacteroidetes primarily composed of the genus Prevotella whereas feral samples were more diverse with almost equal proportions of Firmicutes and Bacteroidetes. The combination of metagenomics and culture techniques facilitated a greater retrieval of annotated genes than either method alone. The single medium based pig microbiota library we report is a resource to better understand pig gut microbial ecology and function. It allows for assemblage of defined bacterial communities for studies in bioreactors or germfree animal models.


2018 ◽  
Vol 95 (1) ◽  
Author(s):  
Michael McTee ◽  
Lorinda Bullington ◽  
Matthias C Rillig ◽  
Philip W Ramsey

ABSTRACTMany experiments that measure the response of microbial communities to heavy metals increase metal concentrations abruptly in the soil. However, it is unclear whether abrupt additions mimic the gradual and often long-term accumulation of these metals in the environment where microbial populations may adapt. In a greenhouse experiment that lasted 26 months, we tested whether bacterial communities and soil respiration differed between soils that received an abrupt or a gradual addition of copper or no copper at all. Bacterial richness and other diversity indices were consistently lower in the abrupt treatment compared to the ambient treatment that received no copper. The abrupt addition of copper yielded different initial bacterial communities than the gradual addition; however, these communities appeared to converge once copper concentrations were approximately equal. Soil respiration in the abrupt treatment was initially suppressed but recovered after four months. Afterwards, respiration in both the gradual and abrupt treatments wavered between being below or equal to the ambient treatment. Overall, our study indicates that gradual and abrupt additions of copper can yield similar bacterial communities and respiration, but these responses may drastically vary until copper concentrations are equal.


2018 ◽  
Author(s):  
Dustin Lane

Programmed cell death signaling networks are frequently activated to coordinate the process of cell differentiation, and a variety of apoptotic events can mediate the process. This can include the ligation of death receptors, the activation of downstream caspases, and the induction of chromatin fragmentation, and all of these events can occur without downstream induction of death. Importantly, regulators of programmed cell death also have established roles in mediating differentiation. This review will provide an overview of apoptosis and its regulation by Inhibitors of Apoptosis (IAPs) and Bcl-2 family members. It will then outline the cross-talk between NF-ĸB and apoptotic signaling in the regulation of apoptosis before discussing the function of these regulators in the control of cell differentiation. It will end on a discussion of how a DNA damage-directed, cell cycle-dependent differentiation program may be controlled across multiple passages through cell cycle, and will assert that the failure to properly differentiate is the underlying cause of cancer.


2021 ◽  
Vol 5 (1) ◽  
pp. 037-054
Author(s):  
Ahmad Mohammad Khalil

Apoptosis has attracted great attention in the last two decades and the number of publications related to apoptosis has been growing exponentially. The revolution that has occurred in apoptosis research is a direct result of a better understanding of the genetic program and biochemical mechanisms of apoptosis. Apoptosis is not only a common normal event but also essential for the growth and development of organisms. In the adult, apoptosis is mostly abnormal, but in its absence or failure cancer cells obtain immortality by escaping this type of cell death. Apoptosis works synergistically in intrinsic and extrinsic pathways. The first pathway is initiated by the cell itself in response to stress. The second is initiated via death receptors stimulated by cells of the immune system. This review is an attempt to answer questions like: Why is cell death important to study? How cells undergo apoptosis? What controls the decision between life and death? Which cellular events could cause the control of apoptosis to be impaired? The literature cited below shows some sort of unity in the scientific community on the necessity of a sophisticated balance between “pro-survival” and “pro-death” forces to ensure the happiness of cells in multicellular organisms


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1790
Author(s):  
Lei Zhang ◽  
Ruohan Jia ◽  
Huizhen Li ◽  
Huarun Yu ◽  
Keke Ren ◽  
...  

Ferroptosis, a newly described type of iron-dependent programmed cell death that is distinct from apoptosis, necroptosis, and other types of cell death, is involved in lipid peroxidation (LP), reactive oxygen species (ROS) production, and mitochondrial dysfunction. Accumulating evidence has highlighted vital roles for ferroptosis in multiple diseases, including acute kidney injury, cancer, hepatic fibrosis, Parkinson’s disease, and Alzheimer’s disease. Therefore, ferroptosis has become one of the research hotspots for disease treatment and attracted extensive attention in recent years. This review mainly summarizes the relationship between ferroptosis and various diseases classified by the system, including the urinary system, digestive system, respiratory system, nervous system. In addition, the role and molecular mechanism of multiple inhibitors and inducers for ferroptosis are further elucidated. A deeper understanding of the relationship between ferroptosis and multiple diseases may provide new strategies for researching diseases and drug development based on ferroptosis.


2012 ◽  
Vol 01 (02) ◽  
pp. 78-83 ◽  
Author(s):  
R Rajeev ◽  
Kanaram Choudhary ◽  
Swagatika Panda ◽  
Neha Gandhi

AbstractOral cancer is the most common cancer diagnosed in Indian men and is the leading cause of cancer deaths. It is considered as a multistep and multifactorial disease. Besides accumulation of genetic mutations, numerous other carcinogens are involved. In this category, viral and chemical carcinogens are well studied and documented. However, in the oral cavity, the role of microbiota in carcinogenesis is not known. Microbial populations on mouth mucosa differ between healthy and malignant sites, and certain oral bacterial species have been linked with malignancies, but the evidence is still weak in this respect. Nevertheless, oral microorganisms inevitably up-regulate cytokines and other inflammatory mediators that affect the complex metabolic pathways, and may thus be involved in carcinogenesis. Poor oral health associates statistically with prevalence of many types of cancer such as pancreatic and gastrointestinal cancer. This review presents possible carcinogenesis pathway involved in bacterial carcinogenesis, commonly implicated bacteria in oral carcinogenesis, and their role in cancer therapeutics as well.


2017 ◽  
Vol 199 (18) ◽  
Author(s):  
Reed M. Stubbendieck ◽  
Paul D. Straight

ABSTRACT Bacteria use two-component signaling systems to adapt and respond to their competitors and changing environments. For instance, competitor bacteria may produce antibiotics and other bioactive metabolites and sequester nutrients. To survive, some species of bacteria escape competition through antibiotic production, biofilm formation, or motility. Specialized metabolite production and biofilm formation are relatively well understood for bacterial species in isolation. How bacteria control these functions when competitors are present is not well studied. To address fundamental questions relating to the competitive mechanisms of different species, we have developed a model system using two species of soil bacteria, Bacillus subtilis and Streptomyces sp. strain Mg1. Using this model, we previously found that linearmycins produced by Streptomyces sp. strain Mg1 cause lysis of B. subtilis cells and degradation of colony matrix. We identified strains of B. subtilis with mutations in the two-component signaling system yfiJK operon that confer dual phenotypes of specific linearmycin resistance and biofilm morphology. We determined that expression of the ATP-binding cassette (ABC) transporter yfiLMN operon, particularly yfiM and yfiN, is necessary for biofilm morphology. Using transposon mutagenesis, we identified genes that are required for YfiLMN-mediated biofilm morphology, including several chaperones. Using transcriptional fusions, we found that YfiJ signaling is activated by linearmycins and other polyene metabolites. Finally, using a truncated YfiJ, we show that YfiJ requires its transmembrane domain to activate downstream signaling. Taken together, these results suggest coordinated dual antibiotic resistance and biofilm morphology by a single multifunctional ABC transporter promotes competitive fitness of B. subtilis. IMPORTANCE DNA sequencing approaches have revealed hitherto unexplored diversity of bacterial species in a wide variety of environments that includes the gastrointestinal tract of animals and the rhizosphere of plants. Interactions between different species in bacterial communities have impacts on our health and industry. However, many approaches currently used to study whole bacterial communities do not resolve mechanistic details of interspecies interactions, including how bacteria sense and respond to their competitors. Using a competition model, we have uncovered dual functions for a previously uncharacterized two-component signaling system involved in specific antibiotic resistance and biofilm morphology. Insights gleaned from signaling within interspecies interaction models build a more complete understanding of gene functions important for bacterial communities and will enhance community-level analytical approaches.


Sign in / Sign up

Export Citation Format

Share Document