inhibitors of apoptosis
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 23)

H-INDEX

37
(FIVE YEARS 3)

Author(s):  
Parima Udompholkul ◽  
Carlo Baggio ◽  
Luca Gambini ◽  
Giulia Alboreggia ◽  
Maurizio Pellecchia

2021 ◽  
Vol 11 (6) ◽  
pp. 1324-1326
Author(s):  
Karilyn T.M. Larkin ◽  
John C. Byrd

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shaojun Wu ◽  
Ying Zhang ◽  
Shilong You ◽  
Saien Lu ◽  
Naijin Zhang ◽  
...  

AbstractSeptin4, a protein localized at mitochondrion, can promote cells apoptosis mainly by binding XIAP (X-linked inhibitors of apoptosis), however, nothing is known about the role and mechanism of Septin4 in cardiomyocytes apoptosis. Here in the current study, we report that HIF-1α (hypoxia-inducible factor 1 alpha) is a novel interacting protein with Septin4 at Septin4-GTPase domain. In addition, Septin4 enhances the binding between HIF-1α and the E3 ubiquitin ligase VHL (von Hippel-Lindau protein) to down-regulate HIF-1α, and by reducing cardio-protective factor HIF-1α levels, Septin4 aggravated the hypoxia-induced cardiomyocytes apoptosis. We believe these findings will be beneficial to provide effective strategies for clinical treatment of myocardial ischemia and the subsequent injury caused by myocardial hypoxia.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jian Wen ◽  
Hanren Chen ◽  
Zhongyu Ren ◽  
Peng Zhang ◽  
Jianjiao Chen ◽  
...  

AbstractIron-based nanoparticles, which could elicit ferroptosis, is becoming a promising new way to inhibit tumor cell growth. Notably, ultrasmall iron oxide nanoparticles (USIONPs) have been found to upregulate the autophagy process in glioblastoma (GBM) cells. Whether USIONPs could also elicit ferroptosis and the relationship between the USIONPs-induced autophagy and ferroptosis need to be explored. In the current study, our synthesized USIONPs with good water solubility could significantly upregulate the ferroptosis markers in GBM cells, and downregulate the expression of anti-ferroptosis genes. Interestingly,ferrostatin-1 could reverse USIONPs- induced ferroptosis, but inhibitors of apoptosis, pyroptosis, or necrosis could not. Meanwhile, autophagy inhibitor 3-methyladenine could also reverse the USIONPs-induced ferroptosis. In addition, shRNA silencing of upstream genes Beclin1/ATG5 of autophagy process could significantly reverse USIONPs-induced ferroptosis, whereas overexpression of Beclin1/ATG5 of autophagy process could remarkably promote USIONPs-induced ferroptosis. Furthermore, lysosome inhibitors could significantly reverse the USIONPs-induced ferroptosis. Collectively, these facts suggest that USIONPs-induced ferroptosis is regulated via Beclin1/ATG5-dependent autophagy pathway.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hao Song ◽  
Ximing Guo ◽  
Lina Sun ◽  
Qianghui Wang ◽  
Fengming Han ◽  
...  

Abstract Background Inhibitors of apoptosis (IAPs) are critical regulators of programmed cell death that are essential for development, oncogenesis, and immune and stress responses. However, available knowledge regarding IAP is largely biased toward humans and model species, while the distribution, function, and evolutionary novelties of this gene family remain poorly understood in many taxa, including Mollusca, the second most speciose phylum of Metazoa. Results Here, we present a chromosome-level genome assembly of an economically significant bivalve, the hard clam Mercenaria mercenaria, which reveals an unexpected and dramatic expansion of the IAP gene family to 159 members, the largest IAP gene repertoire observed in any metazoan. Comparative genome analysis reveals that this massive expansion is characteristic of bivalves more generally. Reconstruction of the evolutionary history of molluscan IAP genes indicates that most originated in early metazoans and greatly expanded in Bivalvia through both lineage-specific tandem duplication and retroposition, with 37.1% of hard clam IAPs located on a single chromosome. The expanded IAPs have been subjected to frequent domain shuffling, which has in turn shaped their architectural diversity. Further, we observed that extant IAPs exhibit dynamic and orchestrated expression patterns among tissues and in response to different environmental stressors. Conclusions Our results suggest that sophisticated regulation of apoptosis enabled by the massive expansion and diversification of IAPs has been crucial for the evolutionary success of hard clam and other molluscan lineages, allowing them to cope with local environmental stresses. This study broadens our understanding of IAP proteins and expression diversity and provides novel resources for studying molluscan biology and IAP function and evolution.


2020 ◽  
Vol 27 ◽  
Author(s):  
Meishan Chen ◽  
Weiwei Wu ◽  
Dongwu Liu ◽  
Yanhua Lv ◽  
Hongkuan Den ◽  
...  

Abstract: Apoptosis, also named programmed cell death, is a highly conserved physiological mechanism. Apoptosis plays crucial roles in many life processes, such as tissue development, organ formation, homeostasis maintenance, resistance against external aggression, and immune responses. Apoptosis is regulated by many genes, among which Apoptosis Inhibitor-5 (API5) is an effective inhibitor, though the structure of API5 is completely different from the other known Inhibitors Of Apoptosis Proteins (IAPs). Due to its high expression in many types of tumors, API5 has received extensive attention, and may be an effective target for cancer treatment. In order to comprehensively and systematically understand the biological roles of API5, we summarized the evolution and structure of API5 and its roles in anti-apoptosis in this review.


Sign in / Sign up

Export Citation Format

Share Document