scholarly journals Electrochemical and Mechanistic Study of Reactivities of α-, β-, γ-, and δ-Tocopherol toward Electrogenerated Superoxide in N,N-Dimethylformamide through Proton-Coupled Electron Transfer

Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
Tatsushi Nakayama ◽  
Ryo Honda ◽  
Kazuo Kuwata ◽  
Shigeyuki Usui ◽  
Bunji Uno

Scavenging of superoxide radical anion (O2•−) by tocopherols (TOH) and related compounds was investigated on the basis of cyclic voltammetry and in situ electrolytic electron spin resonance spectrum in N,N-dimethylformamide (DMF) with the aid of density functional theory (DFT) calculations. Quasi-reversible dioxygen/O2•− redox was modified by the presence of TOH, suggesting that the electrogenerated O2•− was scavenged by α-, β-, γ-TOH through proton-coupled electron transfer (PCET), but not by δ-TOH. The reactivities of α-, β-, γ-, and δ-TOH toward O2•− characterized by the methyl group on the 6-chromanol ring was experimentally confirmed, where the methyl group promotes the PCET mechanism. Furthermore, comparative analyses using some related compounds suggested that the para-oxygen-atom in the 6-chromanol ring is required for a successful electron transfer (ET) to O2•− through the PCET. The electrochemical and DFT results in dehydrated DMF suggested that the PCET mechanism involves the preceding proton transfer (PT) forming a hydroperoxyl radical, followed by a PCET (intermolecular ET–PT). The O2•− scavenging by TOH proceeds efficiently along the PCET mechanism involving one ET and two PTs.

Author(s):  
Tatsushi Nakayama ◽  
Ryo Honda ◽  
Kazuo Kuwata ◽  
Shigeyuki Usui ◽  
Bunji Uno

Abstract: Elimination of superoxide radical anion (O2•−) by tocopherols (TOH), and related compounds was investigated on the basis of cyclic voltammetry and in situ electrolytic electron spin resonance spectral measurements in N,N-dimethylformamide (DMF) with the aid of density functional theory (DFT) calculations. Quasi-reversible O2/O2•− redox was modified by the presence of TOHs, suggesting that the electrogenerated O2•− was eliminated by α-, β-, γ-TOH through proton-coupled electron transfer (PCET), but not by δ-TOH. The structure–activity correlation of α-, β-, γ-, and δ-TOH characterized by methyl group on the 6-chromanol ring was experimentally confirmed, where the methyl group promotes the PCET mechanism. Furthermore, comparative analyses using some related chemical analogues suggested that methoxyl group of the 6-chromanol ring is required for a successful electron transfer (ET) to O2•− through the PCET. The electrochemical and DFT results in dehydrated DMF suggested that the PCET mechanism involves preceding proton transfer (PT) forming hydroperoxyl radical followed by a concerted PCET (ET–PT). The O2•− elimination by TOH proceeds efficiently along the net PCET mechanism involving one ET and two PTs.


2021 ◽  
Vol 14 (2) ◽  
pp. 120
Author(s):  
Tatsushi Nakayama ◽  
Ryo Honda

The elimination of superoxide radical anions (O2•−) by 5-amino-2-hydroxybenzoic acid (mesalazine, 5-ASA), 4-amino-2-hydroxybenzoic acid (4-ASA), and related compounds used for ulcerative colitis treatment was investigated using cyclic voltammetry and electron spin resonance (ESR) analyses aided by density functional theory (DFT) calculations. Quasi-reversible O2/O2•− redox was found to be modified by the compounds, suggesting that an acid–base reaction in which a hydroperoxyl radical (HO2•) is formed from O2•− occurs. However, the deprotonated 5-ASA anion can eliminate O2•− through proton-coupled electron transfer (PCET), forming a radical product. This electron transfer (ET) was confirmed by ESR analysis. The 4-aminophenol moiety in 5-ASA plays an important role in the PCET, involving two proton transfers and one ET based on π-conjugation. The electrochemical and DFT results indicated that O2•− elimination by 5-ASA proceeds efficiently through the PCET mechanism after deprotonation of the 1-carboxyl group. Thus, 5-ASA may act as an anti-inflammatory agent in the alkali intestine through PCET-based O2•− elimination.


Pteridines ◽  
2011 ◽  
Vol 22 (1) ◽  
pp. 73-76 ◽  
Author(s):  
Hong-Fang Ji ◽  
Liang Shen

Abstract Pterins are widespread in biological systems and possess photosensitizing activities. In the present study, the photosensitization mechanism of acid form of pterin (PTA) and basic form of pterin (PTB) is investigated by means of density functional theory calculations. The reactive oxygen species-photogenerating pathways of the lowest triplet excited (T1) state PTA and PTB are proposed as follows. Through direct energy transfer, both T1 state PTA and PTB can photogenerate 1O2. Two possible O2 .−-generating pathways are proposed according to the electronic parameters of PTA and PTB: i) direct electron transfer from T1 state PTA and PTB to 3O2 and the electron transfer reaction is more favorable energetically for PTB in comparison with PTA; and ii) electron transfer from anion radical of PTA and PTB to 3O2.


2020 ◽  
Author(s):  
Tulin Okbinoglu ◽  
Pierre Kennepohl

Molecules containing sulfur-nitrogen bonds, like sulfonamides, have long been of interest due to their many uses and chemical properties. Understanding the factors that cause sulfonamide reactivity is important, yet their continues to be controversy regarding the relevance of S-N π bonding in describing these species. In this paper, we use sulfur K-edge x-ray absorption spectroscopy (XAS) in conjunction with density functional theory (DFT) to explore the role of S<sub>3p</sub> contributions to π-bonding in sulfonamides, sulfinamides and sulfenamides. We explore the nature of electron distribution of the sulfur atom and its nearest neighbors and extend the scope to explore the effects on rotational barriers along the sulfur-nitrogen axis. The experimental XAS data together with TD-DFT calculations confirm that sulfonamides, and the other sulfinated amides in this series, have essentially no S-N π bonding involving S<sub>3p</sub> contributions and that electron repulsion and is the dominant force that affect rotational barriers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Lütgert ◽  
J. Vorberger ◽  
N. J. Hartley ◽  
K. Voigt ◽  
M. Rödel ◽  
...  

AbstractWe present structure and equation of state (EOS) measurements of biaxially orientated polyethylene terephthalate (PET, $$({\hbox {C}}_{10} {\hbox {H}}_8 {\hbox {O}}_4)_n$$ ( C 10 H 8 O 4 ) n , also called mylar) shock-compressed to ($$155 \pm 20$$ 155 ± 20 ) GPa and ($$6000 \pm 1000$$ 6000 ± 1000 ) K using in situ X-ray diffraction, Doppler velocimetry, and optical pyrometry. Comparing to density functional theory molecular dynamics (DFT-MD) simulations, we find a highly correlated liquid at conditions differing from predictions by some equations of state tables, which underlines the influence of complex chemical interactions in this regime. EOS calculations from ab initio DFT-MD simulations and shock Hugoniot measurements of density, pressure and temperature confirm the discrepancy to these tables and present an experimentally benchmarked correction to the description of PET as an exemplary material to represent the mixture of light elements at planetary interior conditions.


Author(s):  
Yang Gao ◽  
Xing Chen ◽  
Shuqi Hu ◽  
Shiguo Zhang

Au-doped SrTiO3 perovskite oxide catalyst (Sr0.995Au0.005TiO3-δ) has been designed and synthesized based on thermodynamic analysis and density functional theory calculations. During reduction, Au nanoparticles with an average diameter of 2...


Sign in / Sign up

Export Citation Format

Share Document