scholarly journals Geometric Error Identification and Analysis of Rotary Axes on Five-Axis Machine Tool Based on Precision Balls

2019 ◽  
Vol 10 (1) ◽  
pp. 100 ◽  
Author(s):  
Chuandong Li ◽  
Xianli Liu ◽  
Rongyi Li ◽  
Shi Wu ◽  
Houwang Song

This paper presents the design of a precise “ball-column” device to efficiently and accurately measure the geometric error terms of both rotary axes of the five-axis machine tool. A geometric error measurement method of spherical contact was proposed based on the influence of the geometric error term from a five-axis machine tool rotating axis on the integrated geometric error of the machine tool. A multiple degree of freedom, step-by-step contact method based on on-machine measure for measuring the spherical center point is proposed, and the solution formula of each geometric error term of the rotating axis is established, respectively. This method can identify 12 geometric errors based on the influence of one rotating axis on another rotating axis after long term operation. The spatial error field of the five-axis machine tool was constructed by analyzing the error law of the two rotating axes of machine tools based on various positions and postures. Finally, after the comparison of the experiment, the results showed that the accuracy of the developed error measurement device reached 91.8% and the detection time was as short as 30–40 min.

2015 ◽  
Vol 9 (4) ◽  
pp. 387-395 ◽  
Author(s):  
Soichi Ibaraki ◽  
◽  
Yu Nagai ◽  
Hisashi Otsubo ◽  
Yasutaka Sakai ◽  
...  

The R-test measures the three-dimensional displacement of a precision sphere, attached to a machine spindle, by using three displacement sensors fixed to the machine’s table. Its application to error calibration for five-axis machine tools has long been studied. This paper presents software for analyzing the measured R-test trajectories for error diagnosis and numerical compensation for rotary axis location errors and error motions. The developed software first graphically presents the measured R-test trajectories to help a user intuitively understand error motions of the rotary axes. It also numerically parameterizes the rotary axis geometric error parameters, and then generates a compensation table that can be implemented in some latest-generation commercial CNC systems. An actual demonstration of its application to a five-axis machine tool with a universal head (two rotary axes on the spindle side) is presented.


2013 ◽  
Vol 420 ◽  
pp. 85-91 ◽  
Author(s):  
Li Gang Cai ◽  
Qiu Nan Feng ◽  
Qiang Cheng ◽  
Pei Hua Gu ◽  
Cui Zhang

The precision model of the 5-axis CNC machine tool can be built up based on the theory of kinematics for multi-body system (MBS). And then based on the precision model, the sensitivity analysis established with matrix differential is a method of identifying geometric error parameters for machine tool. And the geometric error factors of major parts that have relatively significant influence on comprehensive spatial error of the machine tool are identified. Finally, important theoretical basis for improving the titanium alloy Five-axis CNC machining center reasonably and for the error compensation can be provided.


Author(s):  
Kuo Liu ◽  
Wei Han ◽  
Haibo Liu ◽  
Mingjia Sun ◽  
Nan Xie ◽  
...  

Abstract The geometric error measurement and compensation for a five-axis machining center’s tilting rotary table is a difficult problem in the machine tool industry. Aiming at this problem, and based on a thorough study of the geometric error of a vertical five-axis machining center’s tilting rotary table, a method has been suggested in this paper to measure the geometric error of the tilting rotary table using the ball bar performing a three-axis circular interpolation. Eight center bias values in the X and Y directions were obtained by the use of four specific three-axis circular interpolation tests. According to the geometric relations of these four specific forms of circular tests, a geometric error separation model of the tilting rotary table was established. The process of circle test of A-axis and C-axis for vertical five-axis machining center is given in detail. The contrast tests, before and after compensation, were carried out in a vertical five-axis machining center. The experimental results showed that the positional errors and angular errors after compensation were much smaller than those before compensation. The positional error decreased from the maximum value of - 0.089 mm before compensation to the maximum value of - 0.004 mm, and the angle error decreased from the maximum value of - 0.012° before compensation to the maximum value of 0.002°. This method has provided an important reference for the geometric error measurement and compensation for a vertical five-axis machining center’s tilting rotary table.


2012 ◽  
Vol 23 (4) ◽  
pp. 045003 ◽  
Author(s):  
Jindong Wang ◽  
Junjie Guo ◽  
Guoxiong Zhang ◽  
Bao'an Guo ◽  
Hongjian Wang

Sign in / Sign up

Export Citation Format

Share Document