scholarly journals Experimental Study of the Temperature Distribution in CRTS-II Ballastless Tracks on a High-Speed Railway Bridge

2020 ◽  
Vol 10 (6) ◽  
pp. 1980 ◽  
Author(s):  
Lei Zhao ◽  
Ling-Yu Zhou ◽  
Guang-Chao Zhang ◽  
Tian-Yu Wei ◽  
Akim D. Mahunon ◽  
...  

To study the temperature distribution in the China Railway Track System Type II ballastless slab track on a high-speed railway (HSR) bridge, a 1:4 scaled specimen of a simply-supported concrete box girder bridge with a ballastless track was constructed in laboratory. Through a rapid, extreme high temperature test in winter and a conventional high temperature test in summer, the temperature distribution laws in the track on the HSR bridge were studied, and the vertical and transverse temperature distribution trend was suggested for the track. Firstly, the extreme high temperature test results showed that the vertical temperature and the vertical temperature difference distribution in the track on HSR bridge were all nonlinear with three stages. Secondly, the extreme high temperature test showed that the transverse temperature distribution in the track was of quadratic parabolic nonlinear form, and the transverse temperature gradient in the bottom base was significantly higher than that of the other layers of the track. Thirdly, the three-dimensional temperature distribution in the track on HSR bridge was a nonlinear, three-stage surface. Furthermore, similar regularities were also obtained in the conventional high temperature test, in which the temperature span ranges were different from those of the extreme high temperature test. In addition, the conventional high temperature test also showed that under the natural environment conditions, the internal temperature gradient in the track layers changed periodically (over a period of 24 h).

2021 ◽  
Vol 11 (11) ◽  
pp. 5244
Author(s):  
Xinchun Zhang ◽  
Ximin Cui ◽  
Bo Huang

The detection of track geometry parameters is essential for the safety of high-speed railway operation. To improve the accuracy and efficiency of the state detector of track geometry parameters, in this study we propose an inertial GNSS odometer integrated navigation system based on the federated Kalman, and a corresponding inertial track measurement system was also developed. This paper systematically introduces the construction process for the Kalman filter and data smoothing algorithm based on forward filtering and reverse smoothing. The engineering results show that the measurement accuracy of the track geometry parameters was better than 0.2 mm, and the detection speed was about 3 km/h. Thus, compared with the traditional Kalman filter method, the proposed design improved the measurement accuracy and met the requirements for the detection of geometric parameters of high-speed railway tracks.


2021 ◽  
Vol 27 (4) ◽  
pp. 04021030
Author(s):  
Xiaohui Wang ◽  
Jianwei Yang ◽  
Jinhai Wang ◽  
Yanxue Wang ◽  
Fu Liu

2018 ◽  
Vol 8 (5) ◽  
pp. 667 ◽  
Author(s):  
Song Liu ◽  
Jun Yang ◽  
Xianhua Chen ◽  
Guotao Yang ◽  
Degou Cai

Structures ◽  
2020 ◽  
Vol 24 ◽  
pp. 87-98
Author(s):  
Haiyan Li ◽  
Zhiwu Yu ◽  
Jianfeng Mao ◽  
Lizhong Jiang

2019 ◽  
Vol 9 (16) ◽  
pp. 3345 ◽  
Author(s):  
Chen ◽  
Qin ◽  
Xia ◽  
Bao ◽  
Huang ◽  
...  

The dimension detection of high-speed railway track slabs is one of the most important tasks before the track slabs delivery. Based on the characteristics of a 3D scanner which can acquire a large amount of measurement data continuously and rapidly in a short time, this paper uses the integration of 3D scanner and the intelligent robot to detect the CRTSIII (China Railway Track System) track slab supporting block plane, then the dense and accurate supporting block plane point cloud data is obtained, and the point cloud data is registered with the established model. An improved Random Sample Consensus (RANSAC) plane fitting algorithm is also proposed to extract the data of supporting block plane point cloud in this paper. The detection method is verified and the quality analysis of the detection results is assessed by a lot of real point cloud data obtained on site. The results show that the method can meet the quality control of CRTSIII finished track slab and the detection standard. Compared with the traditional detection methods, the detection method proposed in this paper can complete the detection of a track slab in 7 min, which greatly improves the detection efficiency, and has better reliability. The method has wide application prospects in the field of railway component detection.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1152
Author(s):  
Lei MA ◽  
Wenjian WANG ◽  
Jun GUO ◽  
Qiyue LIU

The wear and fatigue behaviors of two newly developed types of high-speed railway wheel materials (named D1 and D2) were studied using the WR-1 wheel/rail rolling–sliding wear simulation device at high temperature (50 °C), room temperature (20 °C), and low temperature (−30 °C). The results showed that wear loss, surface hardening, and fatigue damage of the wheel and rail materials at high temperature (50 °C) and low temperature (−30 °C) were greater than at room temperature, showing the highest values at low temperature. With high Si and V content refining the pearlite lamellar spacing, D2 presented better resistance to wear and fatigue than D1. Generally, D2 wheel material appears more suitable for high-speed railway wheels.


2021 ◽  
pp. 002029402110071
Author(s):  
Da Wang ◽  
Benkun Tan ◽  
Xie Wang ◽  
Zhenhao Zhang

The temperature distribution of the bridge and its thermal effect has always been an important issue for researchers. To investigate the temperature distribution and thermal stress in the steel-concrete composite bridge deck, a 1:4 ratio temperature gradient effect experimental study was carried out in this paper. First, a set of experimental equipment for laboratory temperature gradient loading was designed based on the principle of temperature gradient caused by solar radiation, the temperature gradient obtained from the measurements were compared with the specifications and verified by the FE method. Next, the loading of the steel-concrete composite deck at different temperatures was performed. The thermal stress response and change trend of the simply supported and continuously constrained boundary conditions under different temperature loads were analyzed. The experimental results show that the vertical temperature of steel-concrete composite bridge deck is nonlinear, which is consistent with the temperature gradient trend of specifications. The vertical temperature gradient has a great influence on the steel-concrete composite bridge deck under different constraints, and the extreme stress of concrete slab and steel beam is almost linear with the temperature gradient. Finally, some suggestions for steel-concrete composite deck design were provided based on the research results.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hailin Lu ◽  
Jing Hao ◽  
Jiwei Zhong ◽  
Yafei Wang ◽  
Hongyin Yang

In this study, based on the recorded meteorological data of the bridge site, a spatial-temporal temperature model of a 3-span steel box girder is developed through applying the thermal analysis software TAITHERM. Firstly, the rationality and dependability of the proposed spatial-temporal temperature model are adequately verified by means of implementing the comparison with the measurement data. Then the temperature distribution of the steel box girder is analyzed and discussed in detail. The analytical results show that the time of the bottom of pavement reaching the daily maximum temperature lags behind the top of pavement by 2 or 3 hours due to the thermal insulation effect of pavement, and the maximum vertical temperature gradient of the structure exceeds the existing standards. Moreover, with the help of the analytical model, a parametric study of comprehensively meteorological factors is also performed. The results of the sensitivity analysis indicate that solar radiation is the most significant factor affecting the maximum vertical temperature gradient of the steel box girder, followed by air temperature and wind speed. After that, with the representative values of the extreme meteorological parameters during 100-year return period in Wuhan City in China being considered as the thermal boundary conditions, the temperature distribution of the steel box girder is further studied for investigation purpose. The results demonstrate that the heat conduction process of the steel box girder has distinct “box-room effect,” and it is of great necessity to consider both the actual weather conditions at the bridge site and the “box-room effect” of steel box girder when calculating thermal behaviors of bridge structures. Finally, it is related that the particular method proposed in this paper possesses a satisfactory application prospect for temperature field analysis upon various types of bridges in different regions.


Sign in / Sign up

Export Citation Format

Share Document