scholarly journals Smoothing and Differentiation of Kinematic Data Using Functional Data Analysis Approach: An Application of Automatic and Subjective Methods

2020 ◽  
Vol 10 (7) ◽  
pp. 2493 ◽  
Author(s):  
Muhammad Athif Mat Zin ◽  
Azmin Sham Rambely ◽  
Noratiqah Mohd Ariff ◽  
Muhammad Shahimi Ariffin

Smoothing is one of the fundamental procedures in functional data analysis (FDA). The smoothing parameter λ influences data smoothness and fitting, which is governed by selecting automatic methods, namely, cross-validation (CV) and generalized cross-validation (GCV) or subjective assessment. However, previous biomechanics research has only applied subjective assessment in choosing optimal λ without using any automatic methods beforehand. None of that research demonstrated how the subjective assessment was made. Thus, the goal of this research was to apply the FDA method to smoothing and differentiating kinematic data, specifically right hip flexion/extension (F/E) angle during the American kettlebell swing (AKS) and determine the optimal λ . CV and GCV were applied prior to the subjective assessment with various values of λ together with cubic and quintic spline (B-spline) bases using the FDA approach. The selection of optimal λ was based on smoothed and well-fitted first and second derivatives. The chosen optimal λ was 1 × 10 − 12 with a quintic spline (B-spline) basis and penalized fourth-order derivative. Quintic spline is a better smoothing and differentiation method compared to cubic spline, as it does not produce zero acceleration at endpoints. CV and GCV did not give optimal λ , forcing subjective assessment to be employed instead.

MATEMATIKA ◽  
2018 ◽  
Vol 34 (3) ◽  
pp. 167-177
Author(s):  
Muhammad Fauzee Hamdan ◽  
Abdul Aziz Jemain ◽  
Shariffah Suhaila Syed Jamaludin

Rainfall is an interesting phenomenon to investigate since it is directly related to all aspects of life on earth. One of the important studies is to investigate and understand the rainfall patterns that occur throughout the year. To identify the pattern, it requires a rainfall curve to represent daily observation of rainfall received during the year. Functional data analysis methods are capable to convert discrete data intoa function that can represent the rainfall curve and as a result, try to describe the hidden patterns of the rainfall. This study focused on the distribution of daily rainfall amount using functional data analysis. Fourier basis functions are used for periodic rainfall data. Generalized cross-validation showed 123 basis functions were sufficient to describe the pattern of daily rainfall amount. North and west areas of the peninsula show a significant bimodal pattern with the curve decline between two peaks at the mid-year. Meanwhile,the east shows uni-modal patterns that reached a peak in the last three months. Southern areas show more uniform trends throughout the year. Finally, the functional spatial method is introduced to overcome the problem of estimating the rainfall curve in the locations with no data recorded. We use a leave one out cross-validation as a verification method to compare between the real curve and the predicted curve. We used coefficient of basis functions to get the predicted curve. It was foundthatthe methods ofspatial prediction can match up with the existing spatial prediction methods in terms of accuracy,but it is better as the new approach provides a simpler calculation.


2012 ◽  
Vol 71 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Kazuo Hayashi ◽  
Meiri Hayashi ◽  
Brian Reich ◽  
Seung-Pyo Lee ◽  
Arjun U.C. Sachdeva ◽  
...  

Biometrika ◽  
2020 ◽  
Author(s):  
Zhenhua Lin ◽  
Jane-Ling Wang ◽  
Qixian Zhong

Summary Estimation of mean and covariance functions is fundamental for functional data analysis. While this topic has been studied extensively in the literature, a key assumption is that there are enough data in the domain of interest to estimate both the mean and covariance functions. In this paper, we investigate mean and covariance estimation for functional snippets in which observations from a subject are available only in an interval of length strictly (and often much) shorter than the length of the whole interval of interest. For such a sampling plan, no data is available for direct estimation of the off-diagonal region of the covariance function. We tackle this challenge via a basis representation of the covariance function. The proposed estimator enjoys a convergence rate that is adaptive to the smoothness of the underlying covariance function, and has superior finite-sample performance in simulation studies.


2021 ◽  
Vol 126 ◽  
pp. 103007
Author(s):  
Ying Song ◽  
Siyang Ren ◽  
Julian Wolfson ◽  
Yaxuan Zhang ◽  
Roland Brown ◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 194-195
Author(s):  
Kaiyuan Hua ◽  
Sheng Luo ◽  
Katherine Hall ◽  
Miriam Morey ◽  
Harvey Cohen

Abstract Background. Functional decline in conjunction with low levels of physical activity has implications for health risks in older adults. Previous studies have examined the associations between accelerometry-derived activity and physical function, but most of these studies reduced these data into average means of total daily physical activity (e.g., daily step counts). A new method of analysis “functional data analysis” provides more in-depth capability using minute-level accelerometer data. Methods. A secondary analysis of community-dwelling adults ages 30 to 90+ residing in southwest region of North Carolina from the Physical Performance across the Lifespan (PALS) study. PALS assessments were completed in-person at baseline and one-week of accelerometry. Final analysis includes 669 observations at baseline with minute-level accelerometer data from 7:00 to 23:00, after removing non-wear time. A novel scalar-on-function regression analysis was used to explore the associations between baseline physical activity features (minute-by-minute vector magnitude generated from accelerometer) and baseline physical function (gait speed, single leg stance, chair stands, and 6-minute walk test) with control for baseline age, sex, race and body mass index. Results. The functional regressions were significant for specific times of day indicating increased physical activity associated with increased physical function around 8:00, 9:30 and 15:30-17:00 for rapid gait speed; 9:00-10:30 and 15:00-16:30 for normal gait speed; 9:00-10:30 for single leg stance; 9:30-11:30 and 15:00-18:00 for chair stands; 9:00-11:30 and 15:00-18:30 for 6-minute walk. Conclusion. This method of functional data analysis provides news insights into the relationship between minute-by-minute daily activity and health.


2021 ◽  
pp. 109028
Author(s):  
Silvia Novo ◽  
Germán Aneiros ◽  
Philippe Vieu

Sign in / Sign up

Export Citation Format

Share Document