scholarly journals COVID-XNet: A Custom Deep Learning System to Diagnose and Locate COVID-19 in Chest X-ray Images

2020 ◽  
Vol 10 (16) ◽  
pp. 5683 ◽  
Author(s):  
Lourdes Duran-Lopez ◽  
Juan Pedro Dominguez-Morales ◽  
Jesús Corral-Jaime ◽  
Saturnino Vicente-Diaz ◽  
Alejandro Linares-Barranco

The COVID-19 pandemic caused by the new coronavirus SARS-CoV-2 has changed the world as we know it. An early diagnosis is crucial in order to prevent new outbreaks and control its rapid spread. Medical imaging techniques, such as X-ray or chest computed tomography, are commonly used for this purpose due to their reliability for COVID-19 diagnosis. Computer-aided diagnosis systems could play an essential role in aiding radiologists in the screening process. In this work, a novel Deep Learning-based system, called COVID-XNet, is presented for COVID-19 diagnosis in chest X-ray images. The proposed system performs a set of preprocessing algorithms to the input images for variability reduction and contrast enhancement, which are then fed to a custom Convolutional Neural Network in order to extract relevant features and perform the classification between COVID-19 and normal cases. The system is trained and validated using a 5-fold cross-validation scheme, achieving an average accuracy of 94.43% and an AUC of 0.988. The output of the system can be visualized using Class Activation Maps, highlighting the main findings for COVID-19 in X-ray images. These promising results indicate that COVID-XNet could be used as a tool to aid radiologists and contribute to the fight against COVID-19.

x-rays are the most commonly performed which are costly diagnostic imaging tests ordered by physicians. Here we are proposing an artificial intelligence system that can reliably separate normal from abnormal would be invaluable in addressing the problem of undiagnosed disease and the lack of radiologists in low-resource settings. The aim of this study is to develop and validate a deep learning system to detect chest x-ray abnormalities and hence detect Tuberculosis (TB) and to provide a tool for Computer Aided Diagnosis (CAD).In this paper by trying to explore existing systems of Image Processing and Deep learning architectures, we are trying to achieve radiologist level detection as well as lower False Negative detection of TB by using ensemble datasets and algorithms. The prototype of a WebApp is created and can be checked on https://parth-patel12.github.io where one can upload the chest x-ray which give probabilities of the chest x-ray to be normal or TB affected.


Author(s):  
Mugahed A. Al-antari ◽  
Cam-Hao Hua ◽  
Sungyoung Lee

Abstract Background and Objective: The novel coronavirus 2019 (COVID-19) is a harmful lung disease that rapidly attacks people worldwide. At the end of 2019, COVID-19 was discovered as mysterious lung disease in Wuhan, Hubei province of China. World health organization (WHO) declared the coronavirus outbreak a pandemic in the second week of March 2020. Simultaneous deep learning detection and classification of COVID-19 from the entire digital X-ray images is the key to efficiently assist patients and physicians for a fast and accurate diagnosis.Methods: In this paper, a deep learning computer-aided diagnosis (CAD) based on the YOLO predictor is proposed to simultaneously detect and diagnose COVID-19 among the other eight lung diseases: Atelectasis, Infiltration, Pneumothorax, Mass, Effusion, Pneumonia, Cardiomegaly, and Nodule. The proposed CAD system is assessed via five-fold tests for multi-class prediction problem using two different databases of chest X-ray images: COVID-19 and ChestX-ray8. The proposed CAD system is trained using an annotated training set of 50,490 chest X-ray images.Results: The suspicious regions of COVID-19 from the entire X-ray images are simultaneously detected and classified end-to-end via the proposed CAD predictor achieving overall detection and classification accuracies of 96.31% and 97.40%, respectively. The most testing images of COVID-19 and other lunge diseases are correctly predicted achieving intersection over union (IoU) with their GTs greater than 90%. Applying deep learning regularizers of data balancing and augmentation improve the diagnostic performance by 6.64% and 12.17% in terms of overall accuracy and F1-score, respectively. Meanwhile, the proposed CAD system presents its feasibility to diagnose the individual chest X-ray image within 0.009 second. Thus, the presented CAD system could predict 108 frames/second (FPS) at the real-time of prediction.Conclusion: The proposed deep learning CAD system shows its capability and reliability to achieve promising COVID-19 diagnostic performance among all other lung diseases. The proposed deep learning model seems reliable to assist health care systems, patients, and physicians in their practical validations.


2021 ◽  
pp. 100039
Author(s):  
Candelaria Mosquera ◽  
Fernando Binder ◽  
Facundo Nahuel Diaz ◽  
Alberto Seehaus ◽  
Gabriel Ducrey ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1281
Author(s):  
Anca Loredana Udriștoiu ◽  
Alice Elena Ghenea ◽  
Ștefan Udriștoiu ◽  
Manuela Neaga ◽  
Ovidiu Mircea Zlatian ◽  
...  

(1) Background: The new SARS-COV-2 pandemic overwhelmed intensive care units, clinicians, and radiologists, so the development of methods to forecast the diagnosis’ severity became a necessity and a helpful tool. (2) Methods: In this paper, we proposed an artificial intelligence-based multimodal approach to forecast the future diagnosis’ severity of patients with laboratory-confirmed cases of SARS-CoV-2 infection. At hospital admission, we collected 46 clinical and biological variables with chest X-ray scans from 475 COVID-19 positively tested patients. An ensemble of machine learning algorithms (AI-Score) was developed to predict the future severity score as mild, moderate, and severe for COVID-19-infected patients. Additionally, a deep learning module (CXR-Score) was developed to automatically classify the chest X-ray images and integrate them into AI-Score. (3) Results: The AI-Score predicted the COVID-19 diagnosis’ severity on the testing/control dataset (95 patients) with an average accuracy of 98.59%, average specificity of 98.97%, and average sensitivity of 97.93%. The CXR-Score module graded the severity of chest X-ray images with an average accuracy of 99.08% on the testing/control dataset (95 chest X-ray images). (4) Conclusions: Our study demonstrated that the deep learning methods based on the integration of clinical and biological data with chest X-ray images accurately predicted the COVID-19 severity score of positive-tested patients.


10.2196/18089 ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. e18089
Author(s):  
Ryoungwoo Jang ◽  
Namkug Kim ◽  
Miso Jang ◽  
Kyung Hwa Lee ◽  
Sang Min Lee ◽  
...  

Background Computer-aided diagnosis on chest x-ray images using deep learning is a widely studied modality in medicine. Many studies are based on public datasets, such as the National Institutes of Health (NIH) dataset and the Stanford CheXpert dataset. However, these datasets are preprocessed by classical natural language processing, which may cause a certain extent of label errors. Objective This study aimed to investigate the robustness of deep convolutional neural networks (CNNs) for binary classification of posteroanterior chest x-ray through random incorrect labeling. Methods We trained and validated the CNN architecture with different noise levels of labels in 3 datasets, namely, Asan Medical Center-Seoul National University Bundang Hospital (AMC-SNUBH), NIH, and CheXpert, and tested the models with each test set. Diseases of each chest x-ray in our dataset were confirmed by a thoracic radiologist using computed tomography (CT). Receiver operating characteristic (ROC) and area under the curve (AUC) were evaluated in each test. Randomly chosen chest x-rays of public datasets were evaluated by 3 physicians and 1 thoracic radiologist. Results In comparison with the public datasets of NIH and CheXpert, where AUCs did not significantly drop to 16%, the AUC of the AMC-SNUBH dataset significantly decreased from 2% label noise. Evaluation of the public datasets by 3 physicians and 1 thoracic radiologist showed an accuracy of 65%-80%. Conclusions The deep learning–based computer-aided diagnosis model is sensitive to label noise, and computer-aided diagnosis with inaccurate labels is not credible. Furthermore, open datasets such as NIH and CheXpert need to be distilled before being used for deep learning–based computer-aided diagnosis.


2020 ◽  
pp. 119-130
Author(s):  
Shadman Q. Salih ◽  
Hawre Kh. Abdulla ◽  
Zanear Sh. Ahmed ◽  
Nigar M. Shafiq Surameery ◽  
Rasper Dh. Rashid

First outbreak of COVID-19 was in the city of Wuhan in China in Dec.2019 and then it becomes a pandemic disease all around the world. World Health Organization (WHO) confirmed more than 5.5 million cases and 341,155 deaths from the disease till the time of writing this paper. This new worldwide disease forced researchers to make more precise way to diagnose COVID-19. In the last decade, medical imaging techniques show its efficiency in helping radiologists to detect and diagnose the diseases. Deep learning and transfer learning algorithms are good techniques to detect disease from different image source types such as X-Ray and CT scan images. In this work we used a deep learning technique based on Convolution Neural Network (CNN) to detect and diagnose COVID-19 disease using Chest X-ray images.  Moreover, the modified AlexNet architecture is proposed in different scenarios were differing from each other in terms of the type of the pooling layers and/or the number of the neurons that have used in the second fully connected layer. The used chest X-ray images are gathered from two COVID-19 X-ray image datasets and one dataset includes large number of normal and pneumonia X-ray images. With the proposed models we obtained the same or even better result than the original AlexNet with having a smaller number of neurons in the second fully connected layer.


2021 ◽  
Vol 7 (4) ◽  
pp. 16-32
Author(s):  
Joana Rocha ◽  
Ana Maria Mendonça ◽  
Aurélio Campilho

Backed by more powerful computational resources and optimized training routines, deep learning models have proven unprecedented performance and several benefits to extract information from chest X-ray data. This is one of the most common imaging exams, whose increasing demand is reflected in the aggravated radiologists’ workload. Consequently, healthcare would benefit from computer-aided diagnosis systems to prioritize certain exams and further identify possible pathologies. Pioneering work in chest X-ray analysis has focused on the identification of specific diseases, but to the best of the authors' knowledge no paper has specifically reviewed relevant work on abnormality detection and multi-label thoracic pathology classification. This paper focuses on those issues, selecting the leading chest X-ray based deep learning strategies for comparison. In addition, the paper discloses the current annotated public chest X-ray databases, covering the common thorax diseases.


2021 ◽  
Vol 67 (2) ◽  
pp. 2409-2429
Author(s):  
A. S. Al-Waisy ◽  
Mazin Abed Mohammed ◽  
Shumoos Al-Fahdawi ◽  
M. S. Maashi ◽  
Begonya Garcia-Zapirain ◽  
...  

2020 ◽  
Author(s):  
Mugahed A. Al-antari ◽  
Cam-Hao Hua ◽  
Sungyoung Lee ◽  
Jaehun Bang

Abstract Coronavirus disease 2019 (COVID-19) is a novel harmful respiratory disease that has rapidly spread worldwide. At the end of 2019, COVID-19 emerged as a previously unknown respiratory disease in Wuhan, Hubei Province, China. The world health organization (WHO) declared the coronavirus outbreak a pandemic in the second week of March 2020. Simultaneous deep learning detection and classification of COVID-19 based on the full resolution of digital X-ray images is the key to efficiently assisting patients by enabling physicians to reach a fast and accurate diagnosis decision. In this paper, a simultaneous deep learning computer-aided diagnosis (CAD) system based on the YOLO predictor is proposed that can detect and diagnose COVID-19, differentiating it from eight other respiratory diseases: atelectasis, infiltration, pneumothorax, masses, effusion, pneumonia, cardiomegaly, and nodules. The proposed CAD system was assessed via five-fold tests for the multi-class prediction problem using two different databases of chest X-ray images: COVID-19 and ChestX-ray8. The proposed CAD system was trained with an annotated training set of 50,490 chest X-ray images. The regions on the entire X-ray images with lesions suspected of being due to COVID-19 were simultaneously detected and classified end-to-end via the proposed CAD predictor, achieving overall detection and classification accuracies of 96.31% and 97.40%, respectively. Most test images from patients with confirmed COVID-19 and other respiratory diseases were correctly predicted, achieving average intersection over union (IoU) greater than 90%. Applying deep learning regularizers of data balancing and augmentation improved the COVID-19 diagnostic performance by 6.64% and 12.17% in terms of the overall accuracy and the F1-score, respectively. It is feasible to achieve a diagnosis based on individual chest X-ray images with the proposed CAD system within 0.0093 s. Thus, the CAD system presented in this paper can make a prediction at the rate of 108 frames/s (FPS), which is close to real-time. The proposed deep learning CAD system can reliably differentiate COVID-19 from other respiratory diseases. The proposed deep learning model seems to be a reliable tool that can be used to practically assist health care systems, patients, and physicians.


Sign in / Sign up

Export Citation Format

Share Document