scholarly journals Prediction of Glioma Grades Using Deep Learning with Wavelet Radiomic Features

2020 ◽  
Vol 10 (18) ◽  
pp. 6296 ◽  
Author(s):  
Gökalp Çinarer ◽  
Bülent Gürsel Emiroğlu ◽  
Ahmet Haşim Yurttakal

Gliomas are the most common primary brain tumors. They are classified into 4 grades (Grade I–II-III–IV) according to the guidelines of the World Health Organization (WHO). The accurate grading of gliomas has clinical significance for planning prognostic treatments, pre-diagnosis, monitoring and administration of chemotherapy. The purpose of this study is to develop a deep learning-based classification method using radiomic features of brain tumor glioma grades with deep neural network (DNN). The classifier was combined with the discrete wavelet transform (DWT) the powerful feature extraction tool. This study primarily focuses on the four main aspects of the radiomic workflow, namely tumor segmentation, feature extraction, analysis, and classification. We evaluated data from 121 patients with brain tumors (Grade II, n = 77; Grade III, n = 44) from The Cancer Imaging Archive, and 744 radiomic features were obtained by applying low sub-band and high sub-band 3D wavelet transform filters to the 3D tumor images. Quantitative values were statistically analyzed with MannWhitney U tests and 126 radiomic features with significant statistical properties were selected in eight different wavelet filters. Classification performances of 3D wavelet transform filter groups were measured using accuracy, sensitivity, F1 score, and specificity values using the deep learning classifier model. The proposed model was highly effective in grading gliomas with 96.15% accuracy, 94.12% precision, 100% recall, 96.97% F1 score, and 98.75% Area under the ROC curve. As a result, deep learning and feature selection techniques with wavelet transform filters can be accurately applied using the proposed method in glioma grade classification.

2021 ◽  
Vol 10 (5) ◽  
pp. 2588-2597
Author(s):  
Dalia Mohammad Toufiq ◽  
Ali Makki Sagheer ◽  
Hadi Veisi

The Identification of brain tumors is a critical step that relies on the expertise and abilities of the physician. In order to enable radiologists to spot brain tumors, an automated tumor arrangement is extremely important. This paper presents a technique for MR brain image segmentation and classification to identify images as normal and abnormal. The proposed technique is a hybrid feature extraction submitted to enhance the classification results and basically consists of three stages. The first stage is used a 3-level of discrete wavelet transform (DWT) to extract image characteristics. In the second stage, the principle component analysis (PCA) is applied to reduce the size of characteristics. Finally, a random forest classifier (RF) was used with a feature selection for identification. 181 MR brain images are collected (81 normal and 100 abnormal), in distinguishing normal and abnormal tissues, the experimental results obtained an accuracy of 98%, the sensitivity achieved is 99.2%, specificity achieved is 97.8%, and showed the effectiveness of the proposed technique compared with many kinds of literature. The results show that the 3L-DWT+PCA+RF still achieved the best classification results. The proposed model could apply to the brain MRI sphere classification, which will help doctors to diagnose a tumor if it is normal or abnormal in certain degrees. 


2020 ◽  
Vol 9 (2) ◽  
pp. 415
Author(s):  
Aqeel M.Hamad alhussainy ◽  
Ammar D. Jasim

ECG is very important tool for diagnosis of heart disease, this signal is suffered from different types of noises such as baseline wander (BW), muscle artifact (MA) and electrode motion (EM) , which lead to wrong interpretation. In order to prevent or reduce the effect of these noises, different approaches have been applied to enhance the ECG signal. In this paper, we have proposed a new method for ECG signal de-noising based on deep learning Auto encoder (DL-DAE) and wavelet transform named as (WT-DAE). The proposed system (WT-DAE) is constructed from two stages, in the first stage, the wavelet transform is used to isolate the most significant coefficient of the signal (approximation sub-band) from de-tails coefficients (details sub-band). The details coefficients is fed to new proposed threshold method , which is used to evaluate the threshold value according to the feature of ECG signal, this threshold value is used to threshold the detail coefficients, in order to remove the details noise that is contained as high frequencly component , then invers wavelet transform is used to reconstruct the signal . Different wavelet filters and threshold functions are applied in this stage. The second stage of signal de-noising is performed by using DAE method, which is designed for reconstruct the de-noised sig-nal. The proposed DAE model is constructed from 14 layers of convolutional, relu and max_ pooling layer with different parameters. We perform training and testing the model with MIT-BIH ECG database and the performance of the pro-posed system is evaluated by terms of MSE, RMSE, PRD and PSNR. The experimental results are compared with other approaches and show that, the proposed system demonstrated the superiority for de-noising ECG signal. 


2022 ◽  
Vol 22 (1) ◽  
pp. 1-30
Author(s):  
Rahul Kumar ◽  
Ankur Gupta ◽  
Harkirat Singh Arora ◽  
Balasubramanian Raman

Brain tumors are one of the critical malignant neurological cancers with the highest number of deaths and injuries worldwide. They are categorized into two major classes, high-grade glioma (HGG) and low-grade glioma (LGG), with HGG being more aggressive and malignant, whereas LGG tumors are less aggressive, but if left untreated, they get converted to HGG. Thus, the classification of brain tumors into the corresponding grade is a crucial task, especially for making decisions related to treatment. Motivated by the importance of such critical threats to humans, we propose a novel framework for brain tumor classification using discrete wavelet transform-based fusion of MRI sequences and Radiomics feature extraction. We utilized the Brain Tumor Segmentation 2018 challenge training dataset for the performance evaluation of our approach, and we extract features from three regions of interest derived using a combination of several tumor regions. We used wrapper method-based feature selection techniques for selecting a significant set of features and utilize various machine learning classifiers, Random Forest, Decision Tree, and Extra Randomized Tree for training the model. For proper validation of our approach, we adopt the five-fold cross-validation technique. We achieved state-of-the-art performance considering several performance metrics, 〈 Acc , Sens , Spec , F1-score , MCC , AUC 〉 ≡ 〈 98.60%, 99.05%, 97.33%, 99.05%, 96.42%, 98.19% 〉, where Acc , Sens , Spec , F1-score , MCC , and AUC represents the accuracy, sensitivity, specificity, F1-score, Matthews correlation coefficient, and area-under-the-curve, respectively. We believe our proposed approach will play a crucial role in the planning of clinical treatment and guidelines before surgery.


Author(s):  
Xiaohui Zhou

In this paper, wavelet transform on a regression curve is investigated by using length-preserving projection and its application in financial data is also discussed. First, properties of wavelet filters on the regression trend curves are studied and two-scale equation of wavelet function is deduced on the regression trend curves. Second, the decomposition and reconstruction algorithm of discrete wavelet transform on regression trend curves is derived. Finally, two examples in financial data are given for discussion, based on decomposition and reconstruction algorithms on regression trend curves. Some new research interpretations are presented in dealing with financial data such as “volatility on regression growth trend”, “error on regression growth trend”, and so on.


Author(s):  
BRANDON WHITCHER ◽  
PETER F. CRAIGMILE

We investigate the use of Hilbert wavelet pairs (HWPs) in the non-decimated discrete wavelet transform for the time-varying spectral analysis of multivariate time series. HWPs consist of two high-pass and two low-pass compactly supported filters, such that one high-pass filter is the Hilbert transform (approximately) of the other. Thus, common quantities in the spectral analysis of time series (e.g., power spectrum, coherence, phase) may be estimated in both time and frequency. Compact support of the wavelet filters ensures that the frequency axis will be partitioned dyadically as with the usual discrete wavelet transform. The proposed methodology is used to analyze a bivariate time series of zonal (u) and meridional (v) winds over Truk Island.


Sign in / Sign up

Export Citation Format

Share Document