scholarly journals Genuine Reversible Data Hiding Technique for H.264 Bitstream Using Multi-Dimensional Histogram Shifting Technology on QDCT Coefficients

2020 ◽  
Vol 10 (18) ◽  
pp. 6410
Author(s):  
Jinwoo Kang ◽  
Hyunjung Kim ◽  
Sang-ug Kang

Video has become the most important medium for communication among people. Video has become the most important medium for communication among people. Therefore, reversible data hiding technologies for video have been developed so that information can be hidden in the video without damaging the original video in order to be used in the copyright protection and distribution field of video. This paper proposes a practical and genuine reversible data hiding method by using a multi-dimensional histogram shifting scheme on QDCT coefficients in the H.264/AVC bitstream. The proposed method defines the vacant histogram bins as a set of n-dimensional vectors and finds the optimal vector space, which gives the best performance, in a 4 × 4 QDCT block. In addition, the secret message is mapped to the optimal vector space, which is equivalent to embedding the information into the QDCT block. The simulation results show that the data hiding efficiency is the highest among the compared five existing methods. In addition, the image distortion and maximum payload capacity are measured quite high.

Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 917
Author(s):  
Limengnan Zhou ◽  
Hongyu Han ◽  
Hanzhou Wu

Reversible data hiding (RDH) has become a hot spot in recent years as it allows both the secret data and the raw host to be perfectly reconstructed, which is quite desirable in sensitive applications requiring no degradation of the host. A lot of RDH algorithms have been designed by a sophisticated empirical way. It is not easy to extend them to a general case, which, to a certain extent, may have limited their wide-range applicability. Therefore, it motivates us to revisit the conventional RDH algorithms and present a general framework of RDH in this paper. The proposed framework divides the system design of RDH at the data hider side into four important parts, i.e., binary-map generation, content prediction, content selection, and data embedding, so that the data hider can easily design and implement, as well as improve, an RDH system. For each part, we introduce content-adaptive techniques that can benefit the subsequent data-embedding procedure. We also analyze the relationships between these four parts and present different perspectives. In addition, we introduce a fast histogram shifting optimization (FastHiSO) algorithm for data embedding to keep the payload-distortion performance sufficient while reducing the computational complexity. Two RDH algorithms are presented to show the efficiency and applicability of the proposed framework. It is expected that the proposed framework can benefit the design of an RDH system, and the introduced techniques can be incorporated into the design of advanced RDH algorithms.


2021 ◽  
Vol 11 (15) ◽  
pp. 6741
Author(s):  
Chia-Chen Lin ◽  
Thai-Son Nguyen ◽  
Chin-Chen Chang ◽  
Wen-Chi Chang

Reversible data hiding has attracted significant attention from researchers because it can extract an embedded secret message correctly and recover a cover image without distortion. In this paper, a novel, efficient reversible data hiding scheme is proposed for absolute moment block truncation code (AMBTC) compressed images. The proposed scheme is based on the high correlation of neighboring values in two mean tables of AMBTC-compressed images to further losslessly encode these values and create free space for containing a secret message. Experimental results demonstrated that the proposed scheme obtained a high embedding capacity and guaranteed the same PSNRs as the traditional AMBTC algorithm. In addition, the proposed scheme achieved a higher embedding capacity and higher efficiency rate than those of some previous schemes while maintaining an acceptable bit rate.


2020 ◽  
Vol 64 (1) ◽  
pp. 325-344
Author(s):  
Junxiang Wang ◽  
Lin Huang ◽  
Ying Zhang ◽  
Yonghong Zhu ◽  
Jiangqun Ni ◽  
...  

2012 ◽  
Vol 285 (10-11) ◽  
pp. 2510-2518 ◽  
Author(s):  
Der-Chyuan Lou ◽  
Chao-Lung Chou ◽  
Hao-Kuan Tso ◽  
Chung-Cheng Chiu

Sign in / Sign up

Export Citation Format

Share Document