payload capacity
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 67)

H-INDEX

10
(FIVE YEARS 5)

This research proposes a tweaked scheme based on DNA fragment assembly to improve protection over insecure channel. The proposed procedure utilizes binary coding to change over an underlying plaintext into a reference DNA arrangement to deal with the fragmentation. DNA fragment key expansion is applied over the reference DNA sequence to make the short-chain fragments. The redundancy in the long-chain of reference DNA is removed using DNA fragment assembly. A look-up table is generated to store the binary values of overlapped fragments to be reassembled during the encryption and decryption processes to prevent artefacts. Also, it is used in an overlapped sequence to counteract cipher decomposition. The results and comparisons demonstrate that the proposed scheme can balance the three most important characteristics of any DNA masking scheme: payload, capacity, and BPN. Moreover, the potential for cracking the proposed tweaked method is more complex than the current strategies.


Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 26
Author(s):  
Philipp O. Kotowski ◽  
Michael Becken ◽  
Anneke Thiede ◽  
Volkmar Schmidt ◽  
Jörg Schmalzl ◽  
...  

The semi-airborne electromagnetic (EM) method has the potential to reach deeper exploration depths than purely airborne EM approaches. The concept of the method is to deploy high-power transmitters on the ground, which excite subsurface currents and induce strong magnetic fields, and to measure the corresponding EM fields with a passive airborne receiver instrument. Following recent conceptual developments of the semi-airborne EM technique deployed on helicopters, we performed a 10 km2 semi-airborne EM survey near Münster (Germany) based on a multicopter aircraft system. For this purpose, horizontal electric dipole (HED) transmitters were installed in the survey area and were surveyed individually. Magnetic transfer functions were determined and a model of the conductivity of the study area was derived. Despite restrictions such as low payload capacity and multicopter-related EM noise, we were able to estimate spatially and spectrally consistent transfer functions of high quality up to a distance of 2 km from the respective transmitter. Our results could be validated with independent results from a magnetotelluric and a direct current sounding. The study demonstrates that an unmanned aircraft system (UAS) is suitable for semi-airborne EM application and that such a system can be beneficial where ground-based methods and manned techniques become impractical.


2022 ◽  
Vol 72 (1) ◽  
pp. 3-9
Author(s):  
Yogesh Pratap Singh ◽  
Harjit Singh ◽  
Prahlad Kumar Sahu ◽  
Muthukumar R

Indian Space Research Organization (ISRO) has been advancing in space technology with its cost-effective techniques. Currently, ISRO, in its cryogenic stages, uses truss type intertank structure, which induces large concentrated loads at the truss interfaces. As a remedial measure, works on closed intertank are being carried out by them, but this configuration will considerably increase the launch vehicle mass compared to truss type. Therefore, after a thorough literature survey, a Common bulkhead (CBH) tank seemed to be the best solution to the aforementioned problem. Detailed research on sandwich-type CBH has been carried out in this paper with the motivation of saving mass and height in launch vehicles. Suitable core and facesheet material were selected. A novel foam-filled honeycomb core is suggested in this work. Several comparisons in various CBH dome designs were carried out to reach for the best possible configuration and composition that can be used. MATLAB®, SolidWorks®, and ANSYS® were used in parallel for all computations dealing with design and analysis. A mass saving of approximately upto 490 kgs and a height reduction of upto 1.755 m was obtained with the final selected configuration with respect to the current GSLV configuration. These savings can add extra payload capacity to ISRO launch vehicles in their future missions.


Author(s):  
Sai Adithya Vanga ◽  
Moulshree Srivastava ◽  
Y. D. Dwivedi

In an attempt to reduce the induced drag on a wing, Prandtl found that induced drag reduced significantly by highly increasing the number of vertically offset wings. The same result could be obtained by joining the wingtips of two vertically offset wings. This helped increase payload capacity and also reduced fuel consumption and emissions. Such a wing configuration came to be known as Prandtl’s box wing. In this work, the design and analysis of a box wing aircraft model has been carried out. The preliminary analysis is performed using XFLR5, and the computational analysis is done with the help of ANSYS 18.2. The values of experiments are computed with the help of MATLab R2017. The box wing model has shown a nearly 53.74% reduction in drag as compared with conventional wing models. The computational results of drag have been compared and validated with the results of analytical and the experimental results from the wind tunnel and found to be within 10% of the computational result. Since the drag of the box wing is significantly lesser than the conventional wings the box wing is a feasible configuration which can be used to design various aircrafts including Unmanned Aerial Vehicles and Commercial Planes.


Author(s):  
Marwa Ahmad ◽  
Nameer N. EL-Emam ◽  
Ali F. AL-Azawi

Steganography algorithms have become a significant technique for preventing illegal users from obtaining secret data. In this paper, a deep hiding/extraction algorithm has been improved (IDHEA) to hide a secret message in colour images. The proposed algorithm has been applied to enhance the payload capacity and reduce the time complexity. Modified LSB (MLSB) is based on disseminating secret data randomly on a cover-image and has been proposed to replace a number of bits per byte (Nbpb), up to 4 bits, to increase payload capacity and make it difficult to access the hiding data. The number of levels of the IDHEA algorithm has been specified randomly; each level uses a colour image, and from one level to the next, the image size is expanded, where this algorithm starts with a small size of a cover-image and increases the size of the image gradually or suddenly at the next level, according to an enlargement ratio. Lossless image compression based on the run-length encoding algorithm and Gzip has been applied to enable the size of the data that is hiding at the next level, and data encryption using the Advanced Encryption Standard algorithm (AES) has been introduced at each level to enhance the security level. Thus, the effectiveness of the proposed IDHEA algorithm has been measured at the last level, and the performance of the proposed hiding algorithm has been checked by many statistical and visual measures in terms of the embedding capacity and imperceptibility. Comparisons between the proposed approach and previous work have been implemented; it appears that the intended approach is better than the previously modified LSB algorithms, and it works against visual and statistical attacks with excellent performance achieved by using the detection error (PE). Furthermore, the results confirmed that the stego-image with high imperceptibility has reached even a payload capacity that is large and replaces twelve bits per pixel (12-bpp). Moreover, testing is confirmed in that the proposed algorithm can embed secret data efficiently with better visual quality.


2021 ◽  
Vol 21 ◽  
Author(s):  
Priyank Shah ◽  
Pravin Shende

: Cancer is a rapidly growing life-threatening disease that affected 18.1 million people worldwide in 2018. Various conventional techniques like surgery, radiation, and chemotherapy are considered as a mainstream treatment for patients but show some limitations like cytotoxicity due to off-targeted action, poor intra-tumor localization, development of multi-drug resistance by tumor cells, physical and psychological stresses, etc. Such limitations have motivated the scientists to work towards more patient-centric and precision therapy using advanced drug delivery systems like liposomes, nanoparticles, nanoconjugates, etc. However, these carriers also face limitations like poor biocompatibility, lesser payload capacity, leakage of encapsulated drug, and short-term stability. So, this review article explores the profound insights for the development of biomacromolecule-functionalized nanoconjugates to potentiate the anticancer activity of therapeutic agents for various cancers like lung, colorectal, ovarian, breast and liver cancer. Researchers have shown interest in biofunctionalized nanoconjugates because of advantages like biocompatibility, site-specificity with better localization, higher entrapment with long-term stability and lesser off-target toxicity. The progressive trend of biomacromolecule nanoconjugates will encourage further research for the development of effective transport of drugs, nutraceuticals and phytoconstituents for on-site effect at cancer microenvironment and tumor cells with higher safety profile.


Author(s):  
Lanqing Hu ◽  
Haibo Gao ◽  
Haibo Qu ◽  
Zhen Liu

Planar parallel robots are appealing due to their structural simplicity, high stiffness, and large payload capacity. One major problem is that workspace and singularity of non-redundant parallel robots are unchangeable. Hence, when the desired path crossed with singularity or exceeded the workspace’s boundary, the robot is incapable of finishing the task. Another one is closeness to singularity. If one can know the distance between the end manipulator and singularity or workspace’s boundary, the robot will avoid lose control or breakdown. Compared with the traditional planar parallel robot, the planar parallel robot with kinematic redundancy possesses the advantages of avoiding singularity, expanding workspace by adjusting kinematic redundancy parameter. Therefore, the objective of this article is to present an offline action-strategy of a planar robot with kinematic redundancy to measure the closeness to singularity and avoid singularity. It includes two main parts: First, before the robot moves along the desired paths, the closeness to singularity was measured based on the performance of the kinematics and dynamics so that one can know where to pause the robot. Second, an algorithm is designed to previously find the proper kinematic redundancy parameters for changing singularity and workspace. Hence, the robot can smoothly move far from the singularity to finish all paths. The results indicate that the robot can adjust its configuration to well realize the goal by the offline action-strategy.


Author(s):  
Tatavarthi Sai Deepak ◽  
Vamsidhar Enireddy

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Qiuling Wu ◽  
Aiyan Qu ◽  
Dandan Huang ◽  
Lejun Ma

In order to protect the copyright of audio media in cyberspace, a robust and blind audio watermarking scheme based on the genetic algorithm (GA) is proposed in a dual transform domain. A formula for calculating the embedding depth is developed, and two embedding depths with different values are used to represent the “1” and “0” states of the binary watermark, respectively. In the extracting process, the embedding depth in each audio fragment will be calculated and compared with the average embedding depth to determine the watermark bit by bit, so this scheme can blindly extract the watermark without the original audio. GA will be applied to optimize the algorithm parameters for meeting the performance requirements in different applications. Besides, the embedding rule is further optimized to enhance the transparency based on the principle of minimal modification to the audio. Experimental results prove that the payload capacity reaches 172.27 bps, the bit error rate (BER) is 0.1% under the premise that its transparency is higher than 25 dB, and its robustness is strong against many attacks. Significantly, this scheme can adaptively select the algorithm parameters to satisfy the specific performance requirements.


2021 ◽  
Vol 5 (3) ◽  
pp. 160-165
Author(s):  
M. V. Volkov ◽  
V. V. Dvirny

The vast majority of spacecraft use solar panels as their primary energy source. The widespread using of solar cells is due to the simplicity of the design, reliability, environmental safety and minimal impact on the electronics and radio elements of the spacecraft. The development of new, larger spacecraft is driven by increasing demands on their functionality. These requirements lead to the need to provide more and more payload capacity of the spacecraft, the growth of its mass. There are solar batteries with different types of substrate: flexible, semi-rigid and rigid. Many years of experience in the development and application of solar panels have led to the fact that domestic spacecraft in most designs use solar panels with a semi-rigid substrate consisting of pipes, fittings and strings. This design of the substrate has characteristics at the level of world analogues. The increase in the mass of the payload can be compensated by a decrease in the mass of the power supply system. Thus, to improve the mass-dimensional characteristics, it is possible to optimize the design of the main load-bearing elements-pipes, which implies a more efficient use of the material (reducing the margin of safety with constant rigidity of the frame). The paper presents the results of the study of the possibility of modernizing the structure of the frames of planar solar cells, increasing their mass-dimensional characteristics. The studies were carried out by computational and experimental methods, and experimental samples of pipes were manufactured and released. As a result of the work, a frame made of triangular pipes and fittings was developed, and the mass and mechanical characteristics of the frame were determined.


Sign in / Sign up

Export Citation Format

Share Document