scholarly journals Influence of Additional Bracing Arms as Reinforcement Members in Wooden Timber Cross-Arms on Their Long-Term Creep Responses and Properties

2021 ◽  
Vol 11 (5) ◽  
pp. 2061
Author(s):  
Muhammad Rizal Muhammad Asyraf ◽  
Mohamad Ridzwan Ishak ◽  
Salit Mohd Sapuan ◽  
Noorfaizal Yidris

Previously, numerous creep studies on wood materials have been conducted in various coupon-scale tests. None had conducted research on creep properties of full-scale wooden cross-arms under actual environment and working load conditions. Hence, this research established findings on effect of braced arms on the creep behaviors of Virgin Balau (Shorea dipterocarpaceae) wood timber cross-arm in 132 kV latticed tower. In this research, creep properties of the main members of both current and braced wooden cross-arm designs were evaluated under actual working load conditions at 1000 h. The wooden cross-arm was assembled on a custom-made creep test rig at an outdoor area to simulate its long-term mechanical behaviours under actual environment of tropical climate conditions. Further creep numerical analyses were also performed by using Findley and Burger models in order to elaborate the transient creep, elastic and viscoelastic moduli of both wooden cross-arm configurations. The findings display that the reinforcement of braced arms in cross-arm structure significantly reduced its creep strain. The inclusion of bracing system in cross-arm structure enhanced transient creep and stress independent material exponent of the wooden structure. The addition of braced arms also improved elastic and viscoelastic moduli of wooden cross-arm structure. Thus, the outcomes suggested that the installation of bracing system in wooden cross-arm could extend the structure’s service life. Subsequently, this effort would ease maintenance and reduce cost for long-term applications in transmission towers.

2021 ◽  
Vol 10 (2) ◽  
pp. 20200146
Author(s):  
Vivek Patel ◽  
R. N. Singh ◽  
Madangopal Krishnan

2008 ◽  
Vol 580-582 ◽  
pp. 383-388
Author(s):  
Emmanuel Bauné ◽  
E. Galand ◽  
B. Leduey ◽  
G. Liberati ◽  
G. Cumino ◽  
...  

Increased efficiency and emission reduction in modern power plants lead to the use of new advanced materials with enhanced creep strength, with the objective to increase the steam parameters of power plants. With over ten years on market and wide experience related to its use, ASTM Grade 92 is becoming one of the most required materials when high service temperatures are reached (max. 610°C). Its composition, with 9%Cr and 1.5%W, gives rise to martensitic microstructures which offer very high creep strength and long term stability. The improved weldability and creep-strength between 500 and 580°C of the low alloy ASTM Grade 23, as well as a cost advantage over higher Cr materials in this temperature range, make it one of the possible candidates to meet the stringent requirements of modern power plants. Air Liquide Welding (ALW) has optimized and distributes a complete product family for the welding of Grades 23 and 92. TenarisDalmine (TD) focused on the development of Grade 23 tubes and pipes and is working on the development of Grade 92. A deep characterization work of the microstructural evolution and long term creep performances of these high temperature resistant materials was thus undertaken by ALW and TD, in collaboration with the Centro Sviluppo Materiali (CSM). The joint characterization program consisted in the assessment of welded joints creep properties. Welded joints were produced using the gas tungsten (GTAW), shielded metal (SMAW) and submerged arc welding (SAW) processes. Mechanical and creep properties of weldments were measured both in the as welded and post weld heat treated conditions and proper WPS’s were designed in a manner such that industrial production needs were satisfied. Short term creep resistance of cross weld specimens was measured to be within the base material acceptance criteria. Long term base material and cross weld creep performance evaluation are now in progress.


2005 ◽  
Vol 482 ◽  
pp. 275-278 ◽  
Author(s):  
Vlastimil Vodárek ◽  
Gabriela Rožnovská ◽  
Jaromír Sobotka

The long-term creep rupture tests have been carried out on three casts of a type AISI 316LN steel at 600 and 650°C. Two of the casts investigated contained additions of 0.1 and 0.3 wt.% of niobium. The growing niobium content strongly reduced the minimum creep rate and prolonged the time to the onset of the tertiary stage of creep and also shortened this stage. The enhanced creep resistance of niobium containing steels is not accompanied by the longer creep life that might have been expected. At both temperatures of creep exposure the niobium-bearing casts displayed an inferior creep ductility. Microstructural investigations revealed that niobium provoked significant grain size refinement and the formation of Z-phase. Particles of this phase were considerably dimensionally stable. Furthermore, niobium accelerated the formation and coarsening of s-phase, h-Laves and M6(C,N). The coarse intergranular particles facilitated the formation of cavities which resulted in intergranular failure mode.


2010 ◽  
Vol 96 (4) ◽  
pp. 172-181
Author(s):  
Satoshi Obara ◽  
Takashi Wakai ◽  
Tai Asayama ◽  
Yoshiyuki Yamada ◽  
Takanori Nakazawa ◽  
...  

2014 ◽  
Vol 911 ◽  
pp. 232-237
Author(s):  
Yuan Rong Ma ◽  
Xian Jun Li ◽  
Biao Deng ◽  
Ying She Luo

The study tested the short-term bending creep curves of Eucalyptus Plantation Wood under different loads, moisture contents and temperatures, analyzed the influence of load, moisture content and temperature on creep of Eucalyptus. Guided by the rheological theory, the study adopted the Burger rheological model to do the curve fitting and solved the model parameters. A defect found from Burger model in simulating long-term creep properties of wood was preliminary discussed and remedied. The equivalence of creep test and relaxation one was discussed.


1995 ◽  
Vol 32 (11) ◽  
pp. 1108-1117 ◽  
Author(s):  
Yuji KURATA ◽  
Yutaka OGAWA ◽  
Tomio SUZUKI ◽  
Masami SHINDO ◽  
Hajime NAKAJIMA ◽  
...  

2014 ◽  
Vol 974 ◽  
pp. 9-14
Author(s):  
Saad A. Mutasher ◽  
Ekhlas A. Osman

This research focuses on predicting long-term behavior of unsaturated polyester resin (UP) and kenaf unsaturated polyester composite. The objectives of these tests are to establish a relationship between stress, strain and time at constant loading and temperature. The results obtained from these tests are used in predicting the life and strength of the polymer material. Based on the 1,000 hours experimental data, curve fitting and Findley Power Law models are employed to predict long-term behavior of the material. The results showed that curve fitting model accurately predicted the non-linear time dependent creep deformation of these materials with acceptable accuracy.


Author(s):  
H. Zhou ◽  
A. Mehmanparast ◽  
K. Nikbin

AbstractDetermination of long-term creep rupture properties for 316H steel is both costly and time-consuming and given the level of scatter in the data would need substantial number of tests to be performed. The primary objective of this study is to estimate the long-term creep properties of cross-weld (XW) and as-received (AR) 316H stainless steel by performing accelerated tests on pre-compressed (PC) material. In this work, uniaxial creep rupture tests have been performed on XW specimens and the results have been used to establish a correlation with accelerated test results on the PC material. Moreover, tensile tests have been performed on XW specimens at room temperature and 550 °C to examine the pre-conditioning effects on the mechanical response of the material. Similar power-law creep properties have been found for the creep strain rate and rupture time behaviour of the XW and PC specimens. It also has been found that the creep ductility data points obtained from XW and PC specimens fall upon the estimated trend for the AR material at 550 °C when the data are correlated with the applied stress normalised by 0.2% proof stress. The results show that the long-term creep properties of the XW and AR material can be estimated in much shorter time scales simply by performing tests on the PC material state.


Sign in / Sign up

Export Citation Format

Share Document