scholarly journals MOSAIK and FMI-Based Co-Simulation Applied to Transient Stability Analysis of Grid-Forming Converter Modulated Wind Power Plants

2021 ◽  
Vol 11 (5) ◽  
pp. 2410
Author(s):  
Nakisa Farrokhseresht ◽  
Arjen A. van der Meer ◽  
José Rueda Torres ◽  
Mart A. M. M. van der Meijden

The grid integration of renewable energy sources interfaced through power electronic converters is undergoing a significant acceleration to meet environmental and political targets. The rapid deployment of converters brings new challenges in ensuring robustness, transient stability, among others. In order to enhance transient stability, transmission system operators established network grid code requirements for converter-based generators to support the primary control task during faults. A critical factor in terms of implementing grid codes is the control strategy of the grid-side converters. Grid-forming converters are a promising solution which could perform properly in a weak-grid condition as well as in an islanded operation. In order to ensure grid code compliance, a wide range of transient stability studies is required. Time-domain simulations are common practice for that purpose. However, performing traditional monolithic time domain simulations (single solver, single domain) on a converter-dominated power system is a very complex and computationally intensive task. In this paper, a co-simulation approach using the mosaik framework is applied on a power system with grid-forming converters. A validation workflow is proposed to verify the co-simulation framework. The results of comprehensive simulation studies show a proof of concept for the applicability of this co-simulation approach to evaluate the transient stability of a dominant grid-forming converter-based power system.

2018 ◽  
Vol 10 (11) ◽  
pp. 4140 ◽  
Author(s):  
Seungchan Oh ◽  
Heewon Shin ◽  
Hwanhee Cho ◽  
Byongjun Lee

Efforts to reduce greenhouse gas emissions constitute a worldwide trend. According to this trend, there are many plans in place for the replacement of conventional electric power plants operating using fossil fuels with renewable energy sources (RESs). Owing to current needs to expand the RES penetration in accordance to a new National power system plan, the importance of RESs is increasing. The RES penetration imposes various impacts on the power system, including transient stability. Furthermore, the fact that they are distributed at multiple locations in the power system is also a factor which makes the transient impact analysis of RESs difficult. In this study, the transient impacts attributed to the penetration of RESs are analyzed and compared with the conventional Korean electric power system. To confirm the impact of the penetration of RESs on transient stability, the effect was analyzed based on a single machine equivalent (SIME) configuration. Simulations were conducted in accordance to the Korean power system by considering the anticipated RES penetration in 2030. The impact of RES on transient stability was provided by a change in CCT by increasing of the RES penetration.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 507
Author(s):  
Petar Sarajcev ◽  
Antonijo Kunac ◽  
Goran Petrovic ◽  
Marin Despalatovic

The high penetration of renewable energy sources, coupled with decommissioning of conventional power plants, leads to the reduction of power system inertia. This has negative repercussions on the transient stability of power systems. The purpose of this paper is to review the state-of-the-art regarding the application of artificial intelligence to the power system transient stability assessment, with a focus on different machine, deep, and reinforcement learning techniques. The review covers data generation processes (from measurements and simulations), data processing pipelines (features engineering, splitting strategy, dimensionality reduction), model building and training (including ensembles and hyperparameter optimization techniques), deployment, and management (with monitoring for detecting bias and drift). The review focuses, in particular, on different deep learning models that show promising results on standard benchmark test cases. The final aim of the review is to point out the advantages and disadvantages of different approaches, present current challenges with existing models, and offer a view of the possible future research opportunities.


Author(s):  
G. Fusco ◽  
M. Russo

This paper proposes a simple design procedure to solve the problem of controlling generator transient stability following large disturbances in power systems. A state-feedback excitation controller and power system stabilizer are designed to guarantee robustness against uncertainty in the system parameters. These controllers ensure satisfactory swing damping and quick decay of the voltage regulation error over a wide range of operating conditions. The controller performance is evaluated in a case study in which a three-phase short-circuit fault near the generator terminals in a four-bus power system is simulated.


2020 ◽  
Author(s):  
Ana Fernández-Guillamón ◽  
Emilio Gómez-Lázaro ◽  
Eduard Muljadi ◽  
Ángel Molina-Garcia

Over recent decades, the penetration of renewable energy sources (RES), especially photovoltaic and wind power plants, has been promoted in most countries. However, as these both alternative sources have power electronics at the grid interface (inverters), they are electrically decoupled from the grid. Subsequently, stability and reliability of power systems are compromised. Inertia in power systems has been traditionally determined by considering all the rotating masses directly connected to the grid. Thus, as the penetration of renewable units increases, the inertia of the power system decreases due to the reduction of directly connected rotating machines. As a consequence, power systems require a new set of strategies to include these renewable sources. In fact, ‘hidden inertia,’ ‘synthetic inertia’ and ‘virtual inertia’ are terms currently used to represent an artificial inertia created by inverter control strategies of such renewable sources. This chapter reviews the inertia concept and proposes a method to estimate the rotational inertia in different parts of the world. In addition, an extensive discussion on wind and photovoltaic power plants and their contribution to inertia and power system stability is presented.


2021 ◽  
Vol 24 (4) ◽  
pp. 109-115
Author(s):  
Vyacheslav Valerievich Guryev ◽  
Vladimir Vyacheslavovich Kuvshinov ◽  
Boris Anatolevich Yakimovich

The Crimean Peninsula is the flagship of the development of renewable energy, as it is not only an actively developing region, but also a resort center. The energy complex of the Crimean Peninsula in recent years has increased due to the construction of new power plants (Balaklava TPP and Tavricheskaya TPP) with a total capacity of 940 MW, as well as the construction of new 220 and 330 kV transmission lines, which ensured that the peninsula’s power supply deficit was covered. A review of the regional development and use of renewable energy sources is carried out. Based on the data obtained, an analysis is made of the problems and prospects for the development of renewable energy in the region. The development of renewable energy for the Crimean Peninsula plays an important role in order to achieve environmental safety and develop the economic potential of the region. The paper substantiates the priority use of renewable energy in the region, as well as the solution of emerging problems with an increase in the share of renewable energy in the total generation. The appearance of excess electricity in the power system and the possibility of balancing the generated power of renewable energy and thermal power plants, while reducing the cost of electricity. Investment attractiveness and active population growth in the region leads to an increase in generating capacity and an increase in the maneuverability of the energy system with a significant impact of RES. The efficiency of renewable energy in the energy system, the world experience in managing renewable energy generation, the actual impact of renewable energy on the energy system in conditions of electricity shortage, and forecast work schedules of the SES wind farm provided by the electric power industry entities in the assigned way are taken into account when forming the dispatch schedule and are accepted at the request of the subject. The available experience of existing SES in the power system of the Republic of Crimea and the city of Sevastopol requires additional research, including through field testing of generating equipment. Further full-scale tests should be carried out under the conditions of a real electric power mode of the power system, which requires the introduction of modern information technologies that ensure the exchange of technological information and the implementation of appropriate control actions. The work is underway to create a regulatory framework for the control of renewable energy source operation.


2020 ◽  
Vol 10 (24) ◽  
pp. 8874
Author(s):  
Masaki Yagami ◽  
Masanori Ichinohe ◽  
Junji Tamura

This paper proposes a novel control method for enhancing transient stability by using renewable energy sources (RES). The kinetic energy accumulated in a rotor of variable speed wind generator (VSWG) is proactively used as the active power source, which is controlled according to the frequency measured at the wind farm. In addition, coordinated reactive power control according to the grid voltage is also carried out to more effectively use the kinetic energy of the VSWG. The effects of the proposed control system were evaluated by simulation analyses performed using a modified IEEE nine-bus power system network made up of synchronous generators (SGs), a photovoltaic (PV) system and a VSWG-based wind farm. Furthermore, the coordinated reactive power control between the VSWG and PV system was also demonstrated.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6628
Author(s):  
Chiara Magni ◽  
Alessia Arteconi ◽  
Konstantinos Kavvadias ◽  
Sylvain Quoilin

The EU aims to become the world’s first climate-neutral continent by 2050. In order to meet this target, the integration of high shares of Renewable Energy Sources (RESs) in the energy system is of primary importance. Nevertheless, the large deployment of variable renewable sources such as wind and photovoltaic power will pose important challenges in terms of power management. For this reason, increasing the system flexibility will be crucial to ensure the security of supply in future power systems. This work investigates the flexibility potential obtainable from the diffusion of Demand Response (DR) programmes applied to residential heating for different renewables penetration and power system configuration scenarios. To that end, a bottom-up model for residential heat demand and flexible electric heating systems (heat pumps and electric water heaters) is developed and directly integrated into Dispa-SET, an existing unit commitment optimal dispatch model of the power system. The integrated model is calibrated for the case of Belgium and different simulations are performed varying the penetration and type of residential heating technologies, installed renewables capacity and capacity mix. Results show that, at country level, operational cost could be reduced up to €35 million and curtailment up to 1 TWh per year with 1 million flexible electric heating systems installed. These benefits are significantly reduced when nuclear power plants (non-flexible) are replaced by gas-fired units (flexible) and grow when more renewable capacity is added. Moreover, when the number of flexible heating systems increases, a saturation effect of the flexibility is observed.


Sign in / Sign up

Export Citation Format

Share Document