scholarly journals Research of Personalized Recommendation Technology Based on Knowledge Graphs

2021 ◽  
Vol 11 (15) ◽  
pp. 7104
Author(s):  
Xu Yang ◽  
Ziyi Huan ◽  
Yisong Zhai ◽  
Ting Lin

Nowadays, personalized recommendation based on knowledge graphs has become a hot spot for researchers due to its good recommendation effect. In this paper, we researched personalized recommendation based on knowledge graphs. First of all, we study the knowledge graphs’ construction method and complete the construction of the movie knowledge graphs. Furthermore, we use Neo4j graph database to store the movie data and vividly display it. Then, the classical translation model TransE algorithm in knowledge graph representation learning technology is studied in this paper, and we improved the algorithm through a cross-training method by using the information of the neighboring feature structures of the entities in the knowledge graph. Furthermore, the negative sampling process of TransE algorithm is improved. The experimental results show that the improved TransE model can more accurately vectorize entities and relations. Finally, this paper constructs a recommendation model by combining knowledge graphs with ranking learning and neural network. We propose the Bayesian personalized recommendation model based on knowledge graphs (KG-BPR) and the neural network recommendation model based on knowledge graphs(KG-NN). The semantic information of entities and relations in knowledge graphs is embedded into vector space by using improved TransE method, and we compare the results. The item entity vectors containing external knowledge information are integrated into the BPR model and neural network, respectively, which make up for the lack of knowledge information of the item itself. Finally, the experimental analysis is carried out on MovieLens-1M data set. The experimental results show that the two recommendation models proposed in this paper can effectively improve the accuracy, recall, F1 value and MAP value of recommendation.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Bo Liu ◽  
Qilin Wu ◽  
Yiwen Zhang ◽  
Qian Cao

Pruning is a method of compressing the size of a neural network model, which affects the accuracy and computing time when the model makes a prediction. In this paper, the hypothesis that the pruning proportion is positively correlated with the compression scale of the model but not with the prediction accuracy and calculation time is put forward. For testing the hypothesis, a group of experiments are designed, and MNIST is used as the data set to train a neural network model based on TensorFlow. Based on this model, pruning experiments are carried out to investigate the relationship between pruning proportion and compression effect. For comparison, six different pruning proportions are set, and the experimental results confirm the above hypothesis.


2020 ◽  
Vol 34 (04) ◽  
pp. 6999-7006 ◽  
Author(s):  
Qiannan Zhu ◽  
Xiaofei Zhou ◽  
Jia Wu ◽  
Jianlong Tan ◽  
Li Guo

Knowledge-graph-aware recommendation systems have increasingly attracted attention in both industry and academic recently. Many existing knowledge-aware recommendation methods have achieved better performance, which usually perform recommendation by reasoning on the paths between users and items in knowledge graphs. However, they ignore the users' personal clicked history sequences that can better reflect users' preferences within a period of time for recommendation. In this paper, we propose a knowledge-aware attentional reasoning network KARN that incorporates the users' clicked history sequences and path connectivity between users and items for recommendation. The proposed KARN not only develops an attention-based RNN to capture the user's history interests from the user's clicked history sequences, but also a hierarchical attentional neural network to reason on paths between users and items for inferring the potential user intents on items. Based on both user's history interest and potential intent, KARN can predict the clicking probability of the user with respective to a candidate item. We conduct experiment on Amazon review dataset, and the experimental results demonstrate the superiority and effectiveness of our proposed KARN model.


Author(s):  
Navin Tatyaba Gopal ◽  
Anish Raj Khobragade

The Knowledge graphs (KGs) catches structured data and relationships among a bunch of entities and items. Generally, constitute an attractive origin of information that can advance the recommender systems. But, present methodologies of this area depend on manual element thus don’t permit for start to end training. This article proposes, Knowledge Graph along with Label Smoothness (KG-LS) to offer better suggestions for the recommender Systems. Our methodology processes user-specific entities by prior application of a function capability that recognizes key KG-relationships for a specific user. In this manner, we change the KG in a specific-user weighted graph followed by application of a graph neural network to process customized entity embedding. To give better preliminary predisposition, label smoothness comes into picture, which places items in the KG which probably going to have identical user significant names/scores. Use of, label smoothness gives regularization above the edge weights thus; we demonstrate that it is comparable to a label propagation plan on the graph. Additionally building-up a productive usage that symbolizes solid adaptability concerning the size of knowledge graph. Experimentation on 4 datasets shows that our strategy beats best in class baselines. This process likewise accomplishes solid execution in cold start situations where user-entity communications remain meager.


Machines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 80
Author(s):  
Yalong Li ◽  
Fan Yang ◽  
Wenting Zha ◽  
Licheng Yan

With the continuous optimization of energy structures, wind power generation has become the dominant new energy source. The strong random fluctuation of natural wind will bring challenges to power system dispatching, so it is necessary to predict wind power. In order to improve the short-term prediction accuracy of regional wind power, this paper proposes a new combination prediction model based on convolutional neural network (CNN) and similar days analysis. Firstly, the least square fitting and batch normalization (BN) are used to preprocess the data, and then the recent historical wind power data set for CNN is established. Secondly, the Pearson correlation coefficient and cosine similarity combination method are utilized to find similar days in the long-term data set, and the prediction model based on similar days is constructed by the weighting method. Finally, based on the particle swarm optimization (PSO) method, a combined forecasting model is established. The results show that the combined model can accurately predict the future short-term wind power curve, and the prediction accuracy is improved to different extents compared to a single method.


2020 ◽  
Vol 34 (05) ◽  
pp. 9612-9619
Author(s):  
Zhao Zhang ◽  
Fuzhen Zhuang ◽  
Hengshu Zhu ◽  
Zhiping Shi ◽  
Hui Xiong ◽  
...  

The rapid proliferation of knowledge graphs (KGs) has changed the paradigm for various AI-related applications. Despite their large sizes, modern KGs are far from complete and comprehensive. This has motivated the research in knowledge graph completion (KGC), which aims to infer missing values in incomplete knowledge triples. However, most existing KGC models treat the triples in KGs independently without leveraging the inherent and valuable information from the local neighborhood surrounding an entity. To this end, we propose a Relational Graph neural network with Hierarchical ATtention (RGHAT) for the KGC task. The proposed model is equipped with a two-level attention mechanism: (i) the first level is the relation-level attention, which is inspired by the intuition that different relations have different weights for indicating an entity; (ii) the second level is the entity-level attention, which enables our model to highlight the importance of different neighboring entities under the same relation. The hierarchical attention mechanism makes our model more effective to utilize the neighborhood information of an entity. Finally, we extensively validate the superiority of RGHAT against various state-of-the-art baselines.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2458 ◽  
Author(s):  
Zhuozheng Wang ◽  
Yingjie Dong ◽  
Wei Liu ◽  
Zhuo Ma

The safety of an Internet Data Center (IDC) is directly determined by the reliability and stability of its chiller system. Thus, combined with deep learning technology, an innovative hybrid fault diagnosis approach (1D-CNN_GRU) based on the time-series sequences is proposed in this study for the chiller system using 1-Dimensional Convolutional Neural Network (1D-CNN) and Gated Recurrent Unit (GRU). Firstly, 1D-CNN is applied to automatically extract the local abstract features of the sensor sequence data. Secondly, GRU with long and short term memory characteristics is applied to capture the global features, as well as the dynamic information of the sequence. Moreover, batch normalization and dropout are introduced to accelerate network training and address the overfitting issue. The effectiveness and reliability of the proposed hybrid algorithm are assessed on the RP-1043 dataset; based on the experimental results, 1D-CNN_GRU displays the best performance compared with the other state-of-the-art algorithms. Further, the experimental results reveal that 1D-CNN_GRU has a superior identification rate for minor faults.


2013 ◽  
Vol 6 (10) ◽  
pp. 2879-2891 ◽  
Author(s):  
J. Güldner

Abstract. In the frame of the project "LuFo iPort VIS" which focuses on the implementation of a site-specific visibility forecast, a field campaign was organised to offer detailed information to a numerical fog model. As part of additional observing activities, a 22-channel microwave radiometer profiler (MWRP) was operating at the Munich Airport site in Germany from October 2011 to February 2012 in order to provide vertical temperature and humidity profiles as well as cloud liquid water information. Independently from the model-related aims of the campaign, the MWRP observations were used to study their capabilities to work in operational meteorological networks. Over the past decade a growing quantity of MWRP has been introduced and a user community (MWRnet) was established to encourage activities directed at the set up of an operational network. On that account, the comparability of observations from different network sites plays a fundamental role for any applications in climatology and numerical weather forecast. In practice, however, systematic temperature and humidity differences (bias) between MWRP retrievals and co-located radiosonde profiles were observed and reported by several authors. This bias can be caused by instrumental offsets and by the absorption model used in the retrieval algorithms as well as by applying a non-representative training data set. At the Lindenberg observatory, besides a neural network provided by the manufacturer, a measurement-based regression method was developed to reduce the bias. These regression operators are calculated on the basis of coincident radiosonde observations and MWRP brightness temperature (TB) measurements. However, MWRP applications in a network require comparable results at just any site, even if no radiosondes are available. The motivation of this work is directed to a verification of the suitability of the operational local forecast model COSMO-EU of the Deutscher Wetterdienst (DWD) for the calculation of model-based regression operators in order to provide unbiased vertical profiles during the campaign at Munich Airport. The results of this algorithm and the retrievals of a neural network, specially developed for the site, are compared with radiosondes from Oberschleißheim located about 10 km apart from the MWRP site. Outstanding deviations for the lowest levels between 50 and 100 m are discussed. Analogously to the airport experiment, a model-based regression operator was calculated for Lindenberg and compared with both radiosondes and operational results of observation-based methods. The bias of the retrievals could be considerably reduced and the accuracy, which has been assessed for the airport site, is quite similar to those of the operational radiometer site at Lindenberg above 1 km height. Additional investigations are made to determine the length of the training period necessary for generating best estimates. Thereby three months have proven to be adequate. The results of the study show that on the basis of numerical weather prediction (NWP) model data, available everywhere at any time, the model-based regression method is capable of providing comparable results at a multitude of sites. Furthermore, the approach offers auspicious conditions for automation and continuous updating.


2020 ◽  
Author(s):  
Alokkumar Jha ◽  
Yasar Khan ◽  
Ratnesh Sahay ◽  
Mathieu d’Aquin

AbstractPrediction of metastatic sites from the primary site of origin is a impugn task in breast cancer (BRCA). Multi-dimensionality of such metastatic sites - bone, lung, kidney, and brain, using large-scale multi-dimensional Poly-Omics (Transcriptomics, Proteomics and Metabolomics) data of various type, for example, CNV (Copy number variation), GE (Gene expression), DNA methylation, path-ways, and drugs with clinical associations makes classification of metastasis a multi-faceted challenge. In this paper, we have approached the above problem in three steps; 1) Applied Linked data and semantic web to build Poly-Omics data as knowledge graphs and termed them as cancer decision network; 2) Reduced the dimensionality of data using Graph Pattern Mining and explained gene rewiring in cancer decision network by first time using Kirchhoff’s law for knowledge or any graph traversal; 3) Established ruled based modeling to understand the essential -Omics data from poly-Omics for breast cancer progression 4) Predicted the disease’s metastatic site using Kirchhoff’s knowledge graphs as a hidden layer in the graph convolution neural network(GCNN). The features (genes) extracted by applying Kirchhoff’s law on knowledge graphs are used to predict disease relapse site with 91.9% AUC (Area Under Curve) and performed detailed evaluation against the state-of-the-art approaches. The novelty of our approach is in the creation of RDF knowledge graphs from the poly-omics, such as the drug, disease, target(gene/protein), pathways and application of Kirchhoff’s law on knowledge graph to and the first approach to predict metastatic site from the primary tumor. Further, we have applied the rule-based knowledge graph using graph convolution neural network for metastasis site prediction makes the even classification novel.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012060
Author(s):  
Ping He ◽  
Yong Li ◽  
Shoulong Chen ◽  
Hoghua Xu ◽  
Lei Zhu ◽  
...  

Abstract In order to realize transformer voiceprint recognition, a transformer voiceprint recognition model based on Mel spectrum convolution neural network is proposed. Firstly, the transformer core looseness fault is simulated by setting different preloads, and the sound signals under different preloads are collected; Secondly, the sound signal is converted into a spectrogram that can be trained by convolutional neural network, and then the dimension is reduced by Mel filter bank to draw Mel spectrogram, which can generate spectrogram data sets under different preloads in batch; Finally, the data set is introduced into convolutional neural network for training, and the transformer voiceprint fault recognition model is obtained. The results show that the training accuracy of the proposed Mel spectrum convolution neural network transformer identification model is 99.91%, which can well identify the core loosening faults.


Author(s):  
Muhao Chen ◽  
Yingtao Tian ◽  
Kai-Wei Chang ◽  
Steven Skiena ◽  
Carlo Zaniolo

Multilingual knowledge graph (KG) embeddings provide latent semantic representations of entities and structured knowledge with cross-lingual inferences, which benefit various knowledge-driven cross-lingual NLP tasks. However, precisely learning such cross-lingual inferences is usually hindered by the low coverage of entity alignment in many KGs. Since many multilingual KGs also provide literal descriptions of entities, in this paper, we introduce an embedding-based approach which leverages a weakly aligned multilingual KG for semi-supervised cross-lingual learning using entity descriptions. Our approach performs co-training of two embedding models, i.e. a multilingual KG embedding model and a multilingual literal description embedding model. The models are trained on a large Wikipedia-based trilingual dataset where most entity alignment is unknown to training. Experimental results show that the performance of the proposed approach on the entity alignment task improves at each iteration of co-training, and eventually reaches a stage at which it significantly surpasses previous approaches. We also show that our approach has promising abilities for zero-shot entity alignment, and cross-lingual KG completion.


Sign in / Sign up

Export Citation Format

Share Document