scholarly journals Mechanism Analysis of the Influence of Seat Attributes on the Seat Dip Effect in Music Halls

2021 ◽  
Vol 11 (20) ◽  
pp. 9768
Author(s):  
Hequn Min ◽  
Yitian Liao

The seat dip effect (SDE) is an acoustic phenomenon of low-frequency band attenuation that occurs in the music halls when the sound of the music passes at a near grazing incidence over the seats. In this paper, the numerical simulations on the basis of the finite element method are conducted to study the influence of seat attributes (seat height, seat spacing and seat absorption) on the SDE and the corresponding mechanism. The mapping of sound spatial distribution related to the SDE is employed to observe the behavior of sound between the seats. The results show that the dip frequency of the SDE can be shifted to frequencies lower than theoretical values when the seat height is smaller than the seat spacing. Additionally, the SDE attenuation can be distinctly suppressed in a sequence from the front seats to the rear seats with an absorption improvement to the seat back or cushion, and the seat back absorption is more effective than the cushion absorption. A mechanism analysis reveals that the SDE is highly associated with standing waves inside the seat gaps and with the “diffusion” effect on the grazing incident waves by energy flow vortexes around the top surfaces of the seats.

2015 ◽  
Vol 30 (12) ◽  
pp. 2548-2550
Author(s):  
W. Jark ◽  
D. Eichert

The data interpretation in the recently published paper with the above title is criticized and it is shown that an alternative more physical model based on diffraction in periodic structures can explain the data better and more consistently.


2018 ◽  
Vol 38 ◽  
pp. 04004
Author(s):  
Feng Huang

disintegration examination and analysis are employed in flexible terminal breakdown of 110 kV XLPE insulated cables. It is considered that the main reason of breakdown is the separation of the stress cone of the terminal and the fracture of the semi- conductive layer of the cable insulation. Therefore, the finite element method is used to electric field model and simulate the dislocation fault of internal stress cone and outer semiconductor layer of cable insulation. The distribution of the electric field intensity is calculated and compared. The simulation and calculation results verify the validity of the breakdown mechanism analysis, and put forward some practical suggestions.


1978 ◽  
Vol 1 (16) ◽  
pp. 25
Author(s):  
Robert King ◽  
Ronald Smith

Weak nonlinear interactions in water of non-constant depth between an incident wave, a side-band incident wave and a relatively low frequency trapped wave are shown to lead to the generation of the trapped wave. Three situations are considered in detail: edge waves in a wide rectangular basin, progressive edge waves on a straight beach, and standing waves in a narrow wave tank.


2021 ◽  
Vol 54 (5) ◽  
pp. 1530-1534
Author(s):  
Sergey Stepanov

X-ray Server (https://x-server.gmca.aps.anl.gov) is a collection of programs for online modelling of X-ray diffraction and scattering. The dynamical diffraction program is the second most popular Server program, contributing 34% of total Server usage. It models dynamical X-ray diffraction from strained crystals and multilayers for any Bragg-case geometry including grazing incidence and exit. This paper reports on a revision of equations used by the program, which yields ten times faster calculations in most use cases, on implementing calculations of X-ray standing waves and on adding new options for modelling diffraction from monolayers.


2019 ◽  
Vol 33 (14) ◽  
pp. 1950138
Author(s):  
Myong-Jin Kim

Numerical simulations of the sound transmission loss (STL) of a double-panel structure (DPS) with sonic crystal (SC) comprised of distributed local resonators are presented. The Local Resonant Sonic Crystal (LRSC) consists of “C”-shaped Helmholtz resonator columns with different resonant frequencies. The finite element method is used to calculate the STL of such a DPS. First, the STLs of LRSC in free space and the DPS with LRSC are calculated and compared. It is shown that the sound insulations of the local resonators inserted in the double panel are higher than that in free space for the same size of the SCs and the same number of columns. Next, STL of the DPS in which the SC composed of three columns of local resonators having the same outer and inner diameters but different slot widths are calculated, and a reasonable arrangement order is determined. Finally, the soundproofing performances of DPS with distributed LRSC are compared with the case of insertion of general cylindrical SC for SC embedded in glass wool and not. The results show that the sound insulation of the DPS can be significantly improved in the low frequency range while reducing the total mass without increasing the thickness.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Yu Liu ◽  
Meng Chen ◽  
Wenshuai Xu ◽  
Tao Yang ◽  
Dongliang Pei ◽  
...  

We construct new fractal acoustic metamaterials by coiling up space, which can allow subwavelength-scale and broadband sound insulation to be achieved. Using the finite element method and the S-parameter retrieval method, the band structures, the effective parameters, and the transmission losses of these acoustic metamaterials with different fractal orders are researched individually. The results illustrate that it is easy to form low-frequency bandgaps using these materials and thus achieve subwavelength-scale sound control. As the number of fractal orders increase, more bandgaps appear. In particular, in the ΓX direction of the acoustic metamaterial lattice, more of these wide bandgaps appear in different frequency ranges, thus providing broadband sound insulation and showing promise for use in engineering applications.


Author(s):  
R. V. Craster ◽  
J. Kaplunov ◽  
A. V. Pichugin

An asymptotic procedure based upon a two-scale approach is developed for wave propagation in a doubly periodic inhomogeneous medium with a characteristic length scale of microstructure far less than that of the macrostructure. In periodic media, there are frequencies for which standing waves, periodic with the period or double period of the cell, on the microscale emerge. These frequencies do not belong to the low-frequency range of validity covered by the classical homogenization theory, which motivates our use of the term ‘high-frequency homogenization’ when perturbing about these standing waves. The resulting long-wave equations are deduced only explicitly dependent upon the macroscale, with the microscale represented by integral quantities. These equations accurately reproduce the behaviour of the Bloch mode spectrum near the edges of the Brillouin zone, hence yielding an explicit way for homogenizing periodic media in the vicinity of ‘cell resonances’. The similarity of such model equations to high-frequency long wavelength asymptotics, for homogeneous acoustic and elastic waveguides, valid in the vicinities of thickness resonances is emphasized. Several illustrative examples are considered and show the efficacy of the developed techniques.


Sign in / Sign up

Export Citation Format

Share Document