scholarly journals Low-Threshold, High-Power On-Chip Tunable III-V/Si Lasers with Integrated Semiconductor Optical Amplifiers

2021 ◽  
Vol 11 (23) ◽  
pp. 11096
Author(s):  
Joan Manel Ramírez ◽  
Pierre Fanneau de la Horie ◽  
Jean-Guy Provost ◽  
Stéphane Malhouitre ◽  
Delphine Néel ◽  
...  

Heterogeneously integrated III-V/Si lasers and semiconductor optical amplifiers (SOAs) are key devices for integrated photonics applications requiring miniaturized on-chip light sources, such as in optical communications, sensing, or spectroscopy. In this work, we present a widely tunable laser co-integrated with a semiconductor optical amplifier in a heterogeneous platform that combines AlGaInAs multiple quantum wells (MQWs) and InP-based materials with silicon-on-insulator (SOI) wafers containing photonic integrated circuits. The co-integrated device is compact, has a total device footprint of 0.5 mm2, a lasing current threshold of 10 mA, a selectable wavelength tuning range of 50 nm centered at λ = 1549 nm, a fiber-coupled output power of 10 mW, and a laser linewidth of ν = 259 KHz. The SOA provides an on-chip gain of 18 dB/mm. The total power consumption of the co-integrated devices remains below 0.5 W even for the most power demanding lasing wavelengths. Apart from the above-mentioned applications, the co-integration of compact widely tunable III-V/Si lasers with on-chip SOAs provides a step forward towards the development of highly efficient, portable, and low power systems for wavelength division multiplexed passive optical networks (WDM-PONs).

2020 ◽  
Vol 10 (24) ◽  
pp. 9049
Author(s):  
Chengliang Zuo ◽  
Xun Li

The integrated reflective semiconductor optical amplifier (RSOA) and electro-absorption modulator (EAM) is viewed as an appealing solution to the colorless transmitter on the optical network unit (ONU) side of wavelength-division multiplexed (WDM) passive optical networks (PONs), for its broad modulation bandwidth and high optical gain. However, the conventional RSOA–EAM usually exhibits a poor upstream signal eye-diagram because it can hardly simultaneously saturate the downstream signal and boost the upstream signal as required. By exploiting the polarization-depended RSOA gain, we propose a polarization-discriminated RSOA–EAM to improve the quality of the upstream signal eye-diagram. In this device, the transverse electric polarized downstream signal is saturated by the high gain in the RSOA active region made of compressively strained multiple quantum wells, whereas the upstream signal is linearly amplified after polarization rotation. We find that, as the quality of the upstream signal eye-diagram improves with an increased polarization rotation angle, its power drops, which indicates that there exists an optimized rotation angle to reach a compromise between the upstream signal integrity and power. Simulation results show that the dynamic extinction ratio and output power of the upstream signal can reach 8.3 dB and 11 dBm, respectively, through the proposed device with its rotation angle set at an optimum value (80°), which exceeds the specification (6 dB and 4 dBm) of the upstream transmitter as required by the next-generation PON stage two. The quality of the upstream signal eye-diagram measured in Q-factor is improved by 10 dB compared to the conventional RSOA–EAM design without polarization rotation introduced.


Doklady BGUIR ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 80-84
Author(s):  
A. D. Tussupov ◽  
A. T. Tokhmetov ◽  
N. I. Listopad

Gigabit passive optical networks (GPON) are the most advanced technology. The data transfer rate is 2.5 Gbps for downstream and 1.25 Gbps for upstreams. But this network architecture has a limited physical network length of 20 km. This is due to the high budgetary losses of the network. This restriction of access makes the network difficult to access for subscribers located far from the facilities of the telecom operator, and coverage of remote settlements is quite costly (cost of design work, fiber, laying of fiber-optic cable), thereby complicating the elimination of the digital divide between the city, the suburbs and the countryside. To solve this problem, it is proposed to use quantum dot semiconductor optical amplifiers (QD-SOA), which will expand the GPON reach up to 60 km, which is the limit for the logical length under the current protocols. Quantum dot semiconductor optical amplifiers are promising devices for optical communication technology, but for commercial use they have one disadvantage. They are polarization sensitive. In this paper the authors constructed a polarization diversity scheme to avoid polarization sensitivity of QD-SOAs.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Youssef Said ◽  
Houria Rezig

The focus of this paper is to analyze in detail the nonlinear polarization rotation phenomenon in the Semiconductor Optical Amplifier (SOA) according to the injection conditions. To this end, we have developed a numerical model based on the coupled mode theory and the formalism of Stokes. The obtained results are in agreement with the experimental measurements that have been carried out in free space, which allows optimum control and preservation of the polarization state of the injected and collected signals.


Sign in / Sign up

Export Citation Format

Share Document