optical amplifiers
Recently Published Documents


TOTAL DOCUMENTS

2684
(FIVE YEARS 167)

H-INDEX

69
(FIVE YEARS 7)

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Siddhartha Dutta ◽  
Subhasis Roy ◽  
Kousik Mukherjee

Abstract Present communication deals with the design and analysis of all-optical NOR and NAND gates using Quantum dot Semiconductor Optical Amplifiers (QDSOA). The design uses no interferometer structure but cross gain modulation is utilized for operation. The structures are simple and simulations at a rate of 1 Tb/s are processed. For unsaturated gain 30 dB, the logic gates show high values of ER (29.82 dB, 16.93 dB), CR (29.6 dB, 21.33 dB), and Q (25.4 dB, 13.2 dB). This ensures practical feasibility and high quality of the proposed gates.


2021 ◽  
Vol 12 (1) ◽  
pp. 365
Author(s):  
Hong-Sing Lee ◽  
Chun-Liang Yang ◽  
Chien-Hsiang Chou

This paper demonstrates a wavelength-division-multiplexed passive optical network (WDM-PON) scheme based on novel reconfigurable optical amplifiers (ROAs). The measured switching characteristics of the ROA3 constructed with a 2 × 2 crossbar optical switch and a four-port reversible optical circulator (OC) and a conventional EDFA can meet the requirements of most network management and surveillance. The self-made four-port reversible OC’s response time is less than 2 ms, and its insertion losses are about 1 dB or less for all the transmission paths and switching states. An optimal design of ROAs is proposed and evaluated for bidirectional optical amplifier protection, in which ROA3 has an EDF length of 7.5 m long with a 1480 nm pump laser and possesses a backward or forward pumping configuration with the corresponding pump power of 200 mW or 50 mW. We verified the scheme’s feasibility through a simulation of WDM-PON systems with 40 downstream and upstream channels. This scheme enables the intelligent protection switching in practical operation scenarios for high-capacity multi-wavelength networks.


Author(s):  
Manvir Singh Kushwaha

Abstract We investigate a periodic system of vertically stacked InAs/GaAs quantum dots (VSQD) subjected to a two-dimensional confining harmonic potential and a magnetic field in the symmetric gauge. Given the tiny length scales, adequate lateral confinement, and strong vertical coupling involved in the experiments, the VSQD system has become known for mimicking the standard semiconducting quantum wires. An exact analytical diagnosis of the problem allows us to show the system’s direct relevance to the physics of musical sounds, magnetization, magnetotransport, and the designing of the optical amplifiers. The results suggest making the most of the system for applications in single-electron devices and quantum state transfer in the quantum computation.


2021 ◽  
Vol 11 (23) ◽  
pp. 11096
Author(s):  
Joan Manel Ramírez ◽  
Pierre Fanneau de la Horie ◽  
Jean-Guy Provost ◽  
Stéphane Malhouitre ◽  
Delphine Néel ◽  
...  

Heterogeneously integrated III-V/Si lasers and semiconductor optical amplifiers (SOAs) are key devices for integrated photonics applications requiring miniaturized on-chip light sources, such as in optical communications, sensing, or spectroscopy. In this work, we present a widely tunable laser co-integrated with a semiconductor optical amplifier in a heterogeneous platform that combines AlGaInAs multiple quantum wells (MQWs) and InP-based materials with silicon-on-insulator (SOI) wafers containing photonic integrated circuits. The co-integrated device is compact, has a total device footprint of 0.5 mm2, a lasing current threshold of 10 mA, a selectable wavelength tuning range of 50 nm centered at λ = 1549 nm, a fiber-coupled output power of 10 mW, and a laser linewidth of ν = 259 KHz. The SOA provides an on-chip gain of 18 dB/mm. The total power consumption of the co-integrated devices remains below 0.5 W even for the most power demanding lasing wavelengths. Apart from the above-mentioned applications, the co-integration of compact widely tunable III-V/Si lasers with on-chip SOAs provides a step forward towards the development of highly efficient, portable, and low power systems for wavelength division multiplexed passive optical networks (WDM-PONs).


2021 ◽  
Vol 9 (2) ◽  
pp. 26-29
Author(s):  
Shawbo A. Abubaker

In this work, the design of GaAs/AlGaAs distributed Bragg reflector (DBR) has been implemented for 1300 nm vertical cavity semiconductor optical amplifiers (VCSOAs) for optical fiber communication applications. The top DBR period and Al concentration are varied, the peak reflectivity of the DBR is increasing from 50% to 97.5% for 13 periods with increasing Al concentration, whereas the reflectivity bandwidth is increased to almost 190 nm. The relation between wavelength and incidence angle variation on DBR reflectivity is increasing with the incident angle (0°, 20°, 30°, and 50°), the resonant wavelength and bandwidth of the measured reflectance spectra shifts to shorter wavelength and wider bandwidth, respectively. In addition, a comparison between the linear, the graded, and the parabolic DBRs has been achieved with transfer matrix method using MATLAB software to show the influence of layer in DBRs and its effect on lasing wavelength. It is shown that using grading DBR mirror is much more beneficial compared to abrupt DBR, whereas it has lower reflectivity of almost 10% due to VCSOAs device which needs less number of top layers until prevent reaching lasing threshold.


2021 ◽  
Author(s):  
Lilita Ģēģere

In recent years, the information technology sector has developed rapidly and there has been a rapid increase in the amount of information transmitted. The demand for larger telecommunication network capacities is growing, therefore it is necessary to increase the number of channels and transmission speed in wavelength division multiplexed transmission systems. Various optical amplifiers can be used to compensate for the attenuation of the accumulated signal (over a wide wavelength range). The Doctoral Thesis did research on the use of EDFA, Raman, FOPA and combined optical amplifiers in wavelength division multiplexing systems. In the work, special emphasis is placed on erbium and ytterbium alloy fibers with the study of computer modeling of optical amplifiers in cladding pumping technology.


2021 ◽  
Vol 34 (4) ◽  
pp. 26-34
Author(s):  
Adnan H. Mohammed ◽  
Muna M. Jassem

We focus on studying the dynamics of bulk semiconductor optical amplifiers and their effects on the saturation region for short pulse that differ, however there is the same unsaturated gain for both dynamics. Parameters like current injection, fast dynamics present by carrier heating (CH), and spectra hole burning (SHB) are studied for regions that occur a response to certain dynamics. The behavior of the saturation region is found to be responsible for phenomena such as recovery time and chirp for the pulse under study.


2021 ◽  
Vol 21 (2) ◽  
pp. 22-27
Author(s):  
Norbert ZDRAVECKÝ ◽  
◽  
Ľuboš OVSENÍK ◽  
Jakub ORAVEC ◽  
Maroš LAPČÁK

Wavelength Division Multiplexing is a technology that has enabled the transmission of huge amounts of data at high transfer rates over a single optical fiber. The capacity of an optical channel is usually affected by the shape of signal, nonlinear characteristics and dispersion. In this article, we focus on the DWDM system, optical amplifiers, and optical modulations in 32-channel DWDM system, which was designed in the OptiSystem program. We evaluate the parameters BER (Bit Error Rate) and Q factor for 40 Gb/s systems with changing amplifiers.


Sign in / Sign up

Export Citation Format

Share Document