scholarly journals Reinforced Drapery Meshes: A Design Method Accounting for Retaining Ropes Contribution

2021 ◽  
Vol 11 (23) ◽  
pp. 11176
Author(s):  
Maddalena Marchelli ◽  
Giorgio Giacchetti

Reinforced drapery meshes, both secured and pinned, constitute a compelling solution for rockfall risk mitigation on rock slopes facing structures and infrastructures. They consist of steel wire mesh panels combined with a systematic anchoring pattern. In secured drapery systems, the anchors are connected to each other and to the net through ropes. The system prevents both global instability of the surficial part of the slope thanks to the anchors and local instability by confining small detached fragments in delimited mesh sections. The mesh is generally designed with mechanical resistance derived from the puncturing force–displacement behavior observed during a standardized laboratory test. Despite the fact that a codified design method has not yet been defined, the mesh is generally verified without considering the presence of the ropes. In the present work, an enhanced design method is introduced that accounts for retaining ropes, with the aim of achieving a confining effect similar to the constraints adopted in laboratory tests. In addition, the rope pattern enables the consideration of portions of mesh smaller than pinned drapery systems. In the proposed method, rope elongation is limited such that failure of the mesh near the anchor plate is prevented. The proposed design assessment reveals that the presence of ropes provides possible cost reductions in the choice of the mesh type.

2012 ◽  
Vol 562-564 ◽  
pp. 56-59 ◽  
Author(s):  
Jian Zhuang ◽  
Meng Meng Du ◽  
Heng Zhi Cai ◽  
Ya Jun Zhang ◽  
Da Ming Wu

A facile method for manufacturing super hydrophobic surfaces is presented using the stainless steel wire mesh as templates. The rough surfaces of polymers including polycarbonate, polypropylene and PMMA are prepared with hot embossing on different specifications of stainless steel wire mesh. Scanning electron microscopy (SEM) results reveal that the surfaces roughness of the polymers can be controlled by selecting templates. Contact angle measurement shows that the water contact angles(WCA) rise with the increase of surface roughness, especially, the water contact angle on the PC surfaces prepared with specifications of 635mesh screen can reach to 152.3°, alias super hydrophobic surfaces.


Author(s):  
Liyue Gao ◽  
Xue Kong ◽  
Danni Meng ◽  
Senlin Yang ◽  
Wanying Guo ◽  
...  

2019 ◽  
Vol 817 ◽  
pp. 536-543
Author(s):  
Romina Sisti ◽  
Antonio Borri ◽  
Marco Corradi ◽  
Allen Dudine

This paper presents the results of a laboratory investigation carried out on reinforced mortar plates. Reinforced mortar plates are often applied for shear reinforcement of wall panels. Different reinforcement materials have been embedded into the mortar plates: GFRP (Glass Fiber Reinforced Polymers) grids, fiberglass fabrics and welded steel-wire meshes. This is the first stage in the development of a new type of GFRP-reinforced mortar jacketing, that will provide a solution to enhance the lateral capacity of historic buildings. Such reinforced plates can also be used in applications on new masonry constructions where buildings with damaged or cracked wall panels need to be repaired or retrofitted. The mortar plates were built from commercially available GFRP grids and fabrics that were embedded into the mortar to form a reinforced-mortar square structure of 1 m with a thickness of 30 mm. The plates were tested in the laboratory, under quasi-static patch loads that exceeded the expected seismic loads. The goal of the testing program was to assess the design and construction techniques used, with a view to designing the reinforcement of a historic building. The laboratory tests demonstrated that the GFRP-reinforced plates had sufficient stiffness and strength to function effectively. By comparing the results with the more traditional steel-wire mesh reinforcement, it was also possible to perform a comparative analysis.


Sign in / Sign up

Export Citation Format

Share Document