scholarly journals Automated Extraction of Cerebral Infarction Region in Head MR Image Using Pseudo Cerebral Infarction Image by CycleGAN

2022 ◽  
Vol 12 (1) ◽  
pp. 489
Author(s):  
Mizuki Yoshida ◽  
Atsushi Teramoto ◽  
Kohei Kudo ◽  
Shoji Matsumoto ◽  
Kuniaki Saito ◽  
...  

Since recognizing the location and extent of infarction is essential for diagnosis and treatment, many methods using deep learning have been reported. Generally, deep learning requires a large amount of training data. To overcome this problem, we generated pseudo patient images using CycleGAN, which performed image transformation without paired images. Then, we aimed to improve the extraction accuracy by using the generated images for the extraction of cerebral infarction regions. First, we used CycleGAN for data augmentation. Pseudo-cerebral infarction images were generated from healthy images using CycleGAN. Finally, U-Net was used to segment the cerebral infarction region using CycleGAN-generated images. Regarding the extraction accuracy, the Dice index was 0.553 for U-Net with CycleGAN, which was an improvement over U-Net without CycleGAN. Furthermore, the number of false positives per case was 3.75 for U-Net without CycleGAN and 1.23 for U-Net with CycleGAN, respectively. The number of false positives was reduced by approximately 67% by introducing the CycleGAN-generated images to training cases. These results indicate that utilizing CycleGAN-generated images was effective and facilitated the accurate extraction of the infarcted regions while maintaining the detection rate.

Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1052
Author(s):  
Leang Sim Nguon ◽  
Kangwon Seo ◽  
Jung-Hyun Lim ◽  
Tae-Jun Song ◽  
Sung-Hyun Cho ◽  
...  

Mucinous cystic neoplasms (MCN) and serous cystic neoplasms (SCN) account for a large portion of solitary pancreatic cystic neoplasms (PCN). In this study we implemented a convolutional neural network (CNN) model using ResNet50 to differentiate between MCN and SCN. The training data were collected retrospectively from 59 MCN and 49 SCN patients from two different hospitals. Data augmentation was used to enhance the size and quality of training datasets. Fine-tuning training approaches were utilized by adopting the pre-trained model from transfer learning while training selected layers. Testing of the network was conducted by varying the endoscopic ultrasonography (EUS) image sizes and positions to evaluate the network performance for differentiation. The proposed network model achieved up to 82.75% accuracy and a 0.88 (95% CI: 0.817–0.930) area under curve (AUC) score. The performance of the implemented deep learning networks in decision-making using only EUS images is comparable to that of traditional manual decision-making using EUS images along with supporting clinical information. Gradient-weighted class activation mapping (Grad-CAM) confirmed that the network model learned the features from the cyst region accurately. This study proves the feasibility of diagnosing MCN and SCN using a deep learning network model. Further improvement using more datasets is needed.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Xinyang Li ◽  
Guoxun Zhang ◽  
Hui Qiao ◽  
Feng Bao ◽  
Yue Deng ◽  
...  

AbstractThe development of deep learning and open access to a substantial collection of imaging data together provide a potential solution for computational image transformation, which is gradually changing the landscape of optical imaging and biomedical research. However, current implementations of deep learning usually operate in a supervised manner, and their reliance on laborious and error-prone data annotation procedures remains a barrier to more general applicability. Here, we propose an unsupervised image transformation to facilitate the utilization of deep learning for optical microscopy, even in some cases in which supervised models cannot be applied. Through the introduction of a saliency constraint, the unsupervised model, named Unsupervised content-preserving Transformation for Optical Microscopy (UTOM), can learn the mapping between two image domains without requiring paired training data while avoiding distortions of the image content. UTOM shows promising performance in a wide range of biomedical image transformation tasks, including in silico histological staining, fluorescence image restoration, and virtual fluorescence labeling. Quantitative evaluations reveal that UTOM achieves stable and high-fidelity image transformations across different imaging conditions and modalities. We anticipate that our framework will encourage a paradigm shift in training neural networks and enable more applications of artificial intelligence in biomedical imaging.


2021 ◽  
Vol 11 (15) ◽  
pp. 7148
Author(s):  
Bedada Endale ◽  
Abera Tullu ◽  
Hayoung Shi ◽  
Beom-Soo Kang

Unmanned aerial vehicles (UAVs) are being widely utilized for various missions: in both civilian and military sectors. Many of these missions demand UAVs to acquire artificial intelligence about the environments they are navigating in. This perception can be realized by training a computing machine to classify objects in the environment. One of the well known machine training approaches is supervised deep learning, which enables a machine to classify objects. However, supervised deep learning comes with huge sacrifice in terms of time and computational resources. Collecting big input data, pre-training processes, such as labeling training data, and the need for a high performance computer for training are some of the challenges that supervised deep learning poses. To address these setbacks, this study proposes mission specific input data augmentation techniques and the design of light-weight deep neural network architecture that is capable of real-time object classification. Semi-direct visual odometry (SVO) data of augmented images are used to train the network for object classification. Ten classes of 10,000 different images in each class were used as input data where 80% were for training the network and the remaining 20% were used for network validation. For the optimization of the designed deep neural network, a sequential gradient descent algorithm was implemented. This algorithm has the advantage of handling redundancy in the data more efficiently than other algorithms.


Author(s):  
Uzma Batool ◽  
Mohd Ibrahim Shapiai ◽  
Nordinah Ismail ◽  
Hilman Fauzi ◽  
Syahrizal Salleh

Silicon wafer defect data collected from fabrication facilities is intrinsically imbalanced because of the variable frequencies of defect types. Frequently occurring types will have more influence on the classification predictions if a model gets trained on such skewed data. A fair classifier for such imbalanced data requires a mechanism to deal with type imbalance in order to avoid biased results. This study has proposed a convolutional neural network for wafer map defect classification, employing oversampling as an imbalance addressing technique. To have an equal participation of all classes in the classifier’s training, data augmentation has been employed, generating more samples in minor classes. The proposed deep learning method has been evaluated on a real wafer map defect dataset and its classification results on the test set returned a 97.91% accuracy. The results were compared with another deep learning based auto-encoder model demonstrating the proposed method, a potential approach for silicon wafer defect classification that needs to be investigated further for its robustness.


2020 ◽  
Vol 12 (7) ◽  
pp. 1092
Author(s):  
David Browne ◽  
Michael Giering ◽  
Steven Prestwich

Scene classification is an important aspect of image/video understanding and segmentation. However, remote-sensing scene classification is a challenging image recognition task, partly due to the limited training data, which causes deep-learning Convolutional Neural Networks (CNNs) to overfit. Another difficulty is that images often have very different scales and orientation (viewing angle). Yet another is that the resulting networks may be very large, again making them prone to overfitting and unsuitable for deployment on memory- and energy-limited devices. We propose an efficient deep-learning approach to tackle these problems. We use transfer learning to compensate for the lack of data, and data augmentation to tackle varying scale and orientation. To reduce network size, we use a novel unsupervised learning approach based on k-means clustering, applied to all parts of the network: most network reduction methods use computationally expensive supervised learning methods, and apply only to the convolutional or fully connected layers, but not both. In experiments, we set new standards in classification accuracy on four remote-sensing and two scene-recognition image datasets.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6077
Author(s):  
Gerelmaa Byambatsogt ◽  
Lodoiravsal Choimaa ◽  
Gou Koutaki

In recent years, many researchers have shown increasing interest in music information retrieval (MIR) applications, with automatic chord recognition being one of the popular tasks. Many studies have achieved/demonstrated considerable improvement using deep learning based models in automatic chord recognition problems. However, most of the existing models have focused on simple chord recognition, which classifies the root note with the major, minor, and seventh chords. Furthermore, in learning-based recognition, it is critical to collect high-quality and large amounts of training data to achieve the desired performance. In this paper, we present a multi-task learning (MTL) model for a guitar chord recognition task, where the model is trained using a relatively large-vocabulary guitar chord dataset. To solve data scarcity issues, a physical data augmentation method that directly records the chord dataset from a robotic performer is employed. Deep learning based MTL is proposed to improve the performance of automatic chord recognition with the proposed physical data augmentation dataset. The proposed MTL model is compared with four baseline models and its corresponding single-task learning model using two types of datasets, including a human dataset and a human combined with the augmented dataset. The proposed methods outperform the baseline models, and the results show that most scores of the proposed multi-task learning model are better than those of the corresponding single-task learning model. The experimental results demonstrate that physical data augmentation is an effective method for increasing the dataset size for guitar chord recognition tasks.


2020 ◽  
Vol 10 (21) ◽  
pp. 7755 ◽  
Author(s):  
Liangliang Chen ◽  
Ning Yan ◽  
Hongmai Yang ◽  
Linlin Zhu ◽  
Zongwei Zheng ◽  
...  

Deep learning technology is outstanding in visual inspection. However, in actual industrial production, the use of deep learning technology for visual inspection requires a large number of training data with different acquisition scenarios. At present, the acquisition of such datasets is very time-consuming and labor-intensive, which limits the further development of deep learning in industrial production. To solve the problem of image data acquisition difficulty in industrial production with deep learning, this paper proposes a data augmentation method for deep learning based on multi-degree of freedom (DOF) automatic image acquisition and designs a multi-DOF automatic image acquisition system for deep learning. By designing random acquisition angles and random illumination conditions, different acquisition scenes in actual production are simulated. By optimizing the image acquisition path, a large number of accurate data can be obtained in a short time. In order to verify the performance of the dataset collected by the system, the fabric is selected as the research object after the system is built, and the dataset comparison experiment is carried out. The dataset comparison experiment confirms that the dataset obtained by the system is rich and close to the real application environment, which solves the problem of dataset insufficient in the application process of deep learning to a certain extent.


Author(s):  
LEE SENG YEONG ◽  
LI-MINN ANG ◽  
KING HANN LIM ◽  
KAH PHOOI SENG

A dynamic counterpropagation network based on the forward only counterpropagation network (CPN) is applied as the classifier for face detection. The network, called the dynamic supervised forward-propagation network (DSFPN) trains using a supervised algorithm that grows dynamically during training allowing subclasses in the training data to be learnt. The network is trained using a reduced dimensionality categorized wavelet coefficients of the image data. Experimental results obtained show that a 94% correct detection rate can be achieved with less than 6% false positives.


2020 ◽  
Vol 10 (11) ◽  
pp. 3755
Author(s):  
Eun Kyeong Kim ◽  
Hansoo Lee ◽  
Jin Yong Kim ◽  
Sungshin Kim

Deep learning is applied in various manufacturing domains. To train a deep learning network, we must collect a sufficient amount of training data. However, it is difficult to collect image datasets required to train the networks to perform object recognition, especially because target items that are to be classified are generally excluded from existing databases, and the manual collection of images poses certain limitations. Therefore, to overcome the data deficiency that is present in many domains including manufacturing, we propose a method of generating new training images via image pre-processing steps, background elimination, target extraction while maintaining the ratio of the object size in the original image, color perturbation considering the predefined similarity between the original and generated images, geometric transformations, and transfer learning. Specifically, to demonstrate color perturbation and geometric transformations, we compare and analyze the experiments of each color space and each geometric transformation. The experimental results show that the proposed method can effectively augment the original data, correctly classify similar items, and improve the image classification accuracy. In addition, it also demonstrates that the effective data augmentation method is crucial when the amount of training data is small.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Suxia Cui ◽  
Yu Zhou ◽  
Yonghui Wang ◽  
Lujun Zhai

Recently, human being’s curiosity has been expanded from the land to the sky and the sea. Besides sending people to explore the ocean and outer space, robots are designed for some tasks dangerous for living creatures. Take the ocean exploration for an example. There are many projects or competitions on the design of Autonomous Underwater Vehicle (AUV) which attracted many interests. Authors of this article have learned the necessity of platform upgrade from a previous AUV design project, and would like to share the experience of one task extension in the area of fish detection. Because most of the embedded systems have been improved by fast growing computing and sensing technologies, which makes them possible to incorporate more and more complicated algorithms. In an AUV, after acquiring surrounding information from sensors, how to perceive and analyse corresponding information for better judgement is one of the challenges. The processing procedure can mimic human being’s learning routines. An advanced system with more computing power can facilitate deep learning feature, which exploit many neural network algorithms to simulate human brains. In this paper, a convolutional neural network (CNN) based fish detection method was proposed. The training data set was collected from the Gulf of Mexico by a digital camera. To fit into this unique need, three optimization approaches were applied to the CNN: data augmentation, network simplification, and training process speed up. Data augmentation transformation provided more learning samples; the network was simplified to accommodate the artificial neural network; the training process speed up is introduced to make the training process more time efficient. Experimental results showed that the proposed model is promising, and has the potential to be extended to other underwear objects.


Sign in / Sign up

Export Citation Format

Share Document