Advantages of Machine Learning in Forensic Psychiatric Research—Uncovering the Complexities of Aggressive Behavior in Schizophrenia
Linear statistical methods may not be suited to the understanding of psychiatric phenomena such as aggression due to their complexity and multifactorial origins. Here, the application of machine learning (ML) algorithms offers the possibility of analyzing a large number of influencing factors and their interactions. This study aimed to explore inpatient aggression in offender patients with schizophrenia spectrum disorders (SSDs) using a suitable ML model on a dataset of 370 patients. With a balanced accuracy of 77.6% and an AUC of 0.87, support vector machines (SVM) outperformed all the other ML algorithms. Negative behavior toward other patients, the breaking of ward rules, the PANSS score at admission as well as poor impulse control and impulsivity emerged as the most predictive variables in distinguishing aggressive from non-aggressive patients. The present study serves as an example of the practical use of ML in forensic psychiatric research regarding the complex interplay between the factors contributing to aggressive behavior in SSD. Through its application, it could be shown that mental illness and the antisocial behavior associated with it outweighed other predictors. The fact that SSD is also highly associated with antisocial behavior emphasizes the importance of early detection and sufficient treatment.