scholarly journals A Stochastic Deterioration Process Based Approach for Micro Switches Remaining Useful Life Estimation

2019 ◽  
Vol 9 (3) ◽  
pp. 613
Author(s):  
Bangcheng Zhang ◽  
Yubo Shao ◽  
Zhenchen Chang ◽  
Zhongbo Sun ◽  
Yuankun Sui

Real-time prediction of remaining useful life (RUL) is one of the most essential works inprognostics and health management (PHM) of the micro-switches. In this paper, a lineardegradation model based on an inverse Kalman filter to imitate the stochastic deterioration processis proposed. First, Bayesian posterior estimation and expectation maximization (EM) algorithm areused to estimate the stochastic parameters. Second, an inverse Kalman filter is delivered to solvethe errors in the initial parameters. In order to improve the accuracy of estimating nonlinear data,the strong tracking filtering (STF) method is used on the basis of Bayesian updating Third, theeffectiveness of the proposed approach is validated on an experimental data relating tomicro-switches for the rail vehicle. Additionally, it proposes another two methods for comparisonto illustrate the effectiveness of the method with an inverse Kalman filter in this paper. Inconclusion, a linear degradation model based on an inverse Kalman filter shall deal with errors inRUL estimation of the micro-switches excellently.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yuhuang Zheng

Prognostics health management (PHM) of rotating machinery has become an important process for increasing reliability and reducing machine malfunctions in industry. Bearings are one of the most important equipment parts and are also one of the most common failure points. To assess the degradation of a machine, this paper presents a bearing remaining useful life (RUL) prediction method. The method relies on a novel health indicator and a linear degradation model to predict bearing RUL. The health indicator is extracted by using Hilbert–Huang entropy to process horizontal vibration signals obtained from bearings. We present a linear degradation model to estimate RUL using this health indicator. In the training phase, the degradation detection threshold and the failure threshold of this model are estimated by the distribution of 600 bootstrapped samples. These bootstrapped samples are taken from the six training sets. In the test phase, the health indicator and the model are used to estimate the bearing’s current health state and predict its RUL. This method is suitable for the degradation of bearings. The experimental results show that this method can effectively monitor bearing degradation and predict its RUL.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Pradeep Lall ◽  
Ryan Lowe

This paper compares three prognostic algorithms applied to the same data recorded during the failure of a solder joint in ball grid array component attached to a printed circuit board. The objective is to expand on the relative strengths and weaknesses of each proposed algorithm. Emphasis will be placed on highlighting differences in underlying assumptions required for each algorithm, details of remaining useful life calculations, and methods of uncertainty quantification. Metrics tailored specifically for prognostic health monitoring (PHM) are presented to characterize the performance of predictions. The relative merits of PHM algorithms based on a Kalman filter, extended Kalman filter, and a particle filter all demonstrated on the same data set will be discussed. The paper concludes by discussing which algorithm performs best given the information available about the system being monitored.


Author(s):  
Jos´e R. Celaya ◽  
Chetan S. Kulkarni ◽  
Gautam Biswas ◽  
Kai Goebel

This paper presents a model-driven methodology for predicting the remaining useful life of electrolytic capacitors. This methodology adopts a Kalman filter approach in conjunction with an empirical state-based degradation model to predict the degradation of capacitor parameters through the life of the capacitor. Electrolytic capacitors are important components of systems that range from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their critical role in the system, they are good candidates for component level prognostics and health management. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. This paper proposes and empirical degradation model and discusses experimental results for an accelerated aging test performed on a set of identical capacitors subjected to electrical stress. The data forms the basis for developing the Kalman-filter based remaining life prediction algorithm.


2020 ◽  
Vol 10 (24) ◽  
pp. 8977
Author(s):  
Pangun Park ◽  
Mingyu Jung ◽  
Piergiuseppe Di Marco

Predicting the remaining useful life (RUL) of mechanical bearings is a challenging industrial task since RUL can differ even for the same equipment due to many uncertainties such as operating condition, model inaccuracy, and sensory noise in various industrial applications. This paper proposes the RUL prediction method combining analytical model-based and data-driven approaches to forecast when a failure will occur based on the time series data of bearings. Feature importance ranking and principal component analysis construct a reliable and predictable health indicator from various statistical time, frequency, and time–frequency domain features of the observed signal. The adaptive sliding window method then optimizes the parameters of the degradation model based on the ridge regression of the time series sequence with the sliding window. The proposed adaptive scheme provides significant performance improvement in terms of the RUL estimation accuracy and robustness against the possible errors of the degradation model compared to the traditional Bayesian approaches.


Author(s):  
Michael J. Roemer ◽  
Carl S. Byington

Based on the results of a successful Phase I and II SBIR program performed by Impact Technologies, a suite of Prognostics and Health Management (PHM) algorithms have been developed for detecting incipient faults in the critical bearings associated with aircraft gas turbine engines. The component-level prognostic approach is presented that utilizes available sensor information from vibration transducers, along with material-level component fatigue models to calculate remaining useful life for the engine’s critical components. Specifically, correlation between the sensed data and fatigue-based damage accumulation models were developed to provide remaining useful life assessments for life limited components. The combination of health monitoring data and model-based techniques provides a unique and knowledge rich capability that can be utilized throughout the bearings’s entire life, using model-based estimates when no diagnostic indicators are present and using the monitored vibration features at later stages when incipient failure indications are detectable, thus reducing the uncertainty in model-based predictions. A description and specific implementation of this prognosis approach with application to high speed bearings is illustrated herein, using gas turbine engine and bearing test rig data as validation for the methods.


Author(s):  
Junchuan Shi ◽  
Tianyu Yu ◽  
Kai Goebel ◽  
Dazhong Wu

Abstract Prognostics and health management (PHM) of bearings is crucial for reducing the risk of failure and the cost of maintenance for rotating machinery. Model-based prognostic methods develop closed-form mathematical models based on underlying physics. However, the physics of complex bearing failures under varying operating conditions is not well understood yet. To complement model-based prognostics, data-driven methods have been increasingly used to predict the remaining useful life (RUL) of bearings. As opposed to other machine learning methods, ensemble learning methods can achieve higher prediction accuracy by combining multiple learning algorithms of different types. The rationale behind ensemble learning is that higher performance can be achieved by combining base learners that overestimate and underestimate the RUL of bearings. However, building an effective ensemble remains a challenge. To address this issue, the impact of diversity in base learners and extracted features in different degradation stages on the performance of ensemble learning is investigated. The degradation process of bearings is classified into three stages, including normal wear, smooth wear, and severe wear, based on the root-mean-square (RMS) of vibration signals. To evaluate the impact of diversity on prediction performance, vibration data collected from rolling element bearings was used to train predictive models. Experimental results have shown that the performance of the proposed ensemble learning method is significantly improved by selecting diverse features and base learners in different degradation stages.


Author(s):  
Pradeep Lall ◽  
Ryan Lowe ◽  
Kai Goebel

This paper compares three prognostic algorithms applied to the same data recorded during the failure of a solder joint in ball grid array component attached to a printed circuit board. The objective is to expand on the relative strengths and weaknesses of each proposed algorithm. Emphasis will be placed on highlighting differences in underlying assumptions required for each algorithm, details of remaining useful life calculations, and methods of uncertainty quantification. Metrics tailored specifically for Prognostic Health Monitoring (PHM) are presented to characterize the performance of predictions. The relative merits of PHM algorithms based on a Kalman filter, extended Kalman filter, and a particle filter all demonstrated on the same data set will be discussed. The paper concludes by discussing which algorithm performs best given the information available about the system being monitored.


2020 ◽  
Vol 14 ◽  
Author(s):  
Dangbo Du ◽  
Jianxun Zhang ◽  
Xiaosheng Si ◽  
Changhua Hu

Background: Remaining useful life (RUL) estimation is the central mission to the complex systems’ prognostics and health management. During last decades, numbers of developments and applications of the RUL estimation have proliferated. Objective: As one of the most popular approaches, stochastic process-based approach has been widely used for characterizing the degradation trajectories and estimating RULs. This paper aimed at reviewing the latest methods and patents on this topic. Methods: The review is concentrated on four common stochastic processes for degradation modelling and RUL estimation, i.e., Gamma process, Wiener process, inverse Gaussian process and Markov chain. Results: After a briefly review of these four models, we pointed out the pros and cons of them, as well as the improvement direction of each method. Conclusion: For better implementation, the applications of these four approaches on maintenance and decision-making are systematically introduced. Finally, the possible future trends are concluded tentatively.


2021 ◽  
Vol 11 (16) ◽  
pp. 7175
Author(s):  
Islem Bejaoui ◽  
Dario Bruneo ◽  
Maria Gabriella Xibilia

Rotating machines such as induction motors are crucial parts of most industrial systems. The prognostic health management of induction motor rotors plays an essential role in increasing electrical machine reliability and safety, especially in critical industrial sectors. This paper presents a new approach for rotating machine fault prognosis under broken rotor bar failure, which involves the modeling of the failure mechanism, the health indicator construction, and the remaining useful life prediction. This approach combines signal processing techniques, inherent metrics, and principal component analysis to monitor the induction motor. Time- and frequency-domains features allowing for tracking the degradation trend of motor critical components that are extracted from torque, stator current, and speed signals. The most meaningful features are selected using inherent metrics, while two health indicators representing the degradation process of the broken rotor bar are constructed by applying the principal component analysis. The estimation of the remaining useful life is then obtained using the degradation model. The performance of the prediction results is evaluated using several criteria of prediction accuracy. A set of synthetic data collected from a degraded Simulink model of the rotor through simulations is used to validate the proposed approach. Experimental results show that using the developed prognostic methodology is a powerful strategy to improve the prognostic of induction motor degradation.


Sign in / Sign up

Export Citation Format

Share Document