scholarly journals Fully Coupled Multi-Scale Model for Gas Extraction from Coal Seam Stimulated by Directional Hydraulic Fracturing

2019 ◽  
Vol 9 (21) ◽  
pp. 4720 ◽  
Author(s):  
Ge ◽  
Zhang ◽  
Sun ◽  
Hu

Although numerous studies have tried to explain the mechanism of directional hydraulic fracturing in a coal seam, few of them have been conducted on gas migration stimulated by directional hydraulic fracturing during coal mine methane extraction. In this study, a fully coupled multi-scale model to stimulate gas extraction from a coal seam stimulated by directional hydraulic fracturing was developed and calculated by a finite element approach. The model considers gas flow and heat transfer within the hydraulic fractures, the coal matrix, and cleat system, and it accounts for coal deformation. The model was verified using gas amount data from the NO.8 coal seam at Fengchun mine, Chongqing, Southwest China. Model simulation results show that slots and hydraulic fracture can expand the area of gas pressure drop and decrease the time needed to complete the extraction. The evolution of hydraulic fracture apertures and permeability in coal seams is greatly influenced by the effective stress and coal matrix deformation. A series of sensitivity analyses were performed to investigate the impacts of key factors on gas extraction time of completion. The study shows that hydraulic fracture aperture and the cleat permeability of coal seams play crucial roles in gas extraction from a coal seam stimulated by directional hydraulic fracturing. In addition, the reasonable arrangement of directional boreholes could improve the gas extraction efficiency. A large coal seam dip angle and high temperature help to enhance coal mine methane extraction from the coal seam.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Wei Wang ◽  
Yanzhao Wei ◽  
Minggong Guo ◽  
Yanzhi Li

The current study aims to analyze the principles of integrated technology of explosion to tackle the problems of coal seam high gas content and pressure, developed faults, complex structure, low coal seam permeability, and high outburst risk. Based on this, we found through numerical simulation that as the inclination of the coal seam increases, the risk of coal and gas outburst increases during the tunneling process. Therefore, it is necessary to take measures to reduce the risk of coal and gas outburst. We conducted field engineering experiments. Our results show that the synergistic antireflection technology of hydraulic fracturing and deep-hole presplitting blasting has a significant antireflection effect in low-permeability coal seams. After implementing this technology, the distribution of coal moisture content was relatively uniform and improved the influence range of direction and tendency. Following 52 days of extraction, the average extraction concentration was 2.9 times that of the coal seam gas extraction concentration under the original technology. The average scalar volume of single hole gas extraction was increased by 7.7 times. Through field tests, the purpose of pressure relief and permeability enhancement in low-permeability coal seams was achieved. Moreover, the effect of gas drainage and treatment in low-permeability coal seams was improved, and the applicability, effectiveness, and safety of underground hydraulic fracturing and antireflection technology in low-permeability coal seams were verified. The new technique is promising for preventing and controlling gas hazards in the future.


2021 ◽  
pp. 014459872198899
Author(s):  
Weiyong Lu ◽  
Changchun He

Directional rupture is one of the most important and most common problems related to rock breaking. The goal of directional rock breaking can be effectively achieved via multi-hole linear co-directional hydraulic fracturing. In this paper, the XSite software was utilized to verify the experimental results of multi-hole linear co-directional hydraulic fracturing., and its basic law is studied. The results indicate that the process of multi-hole linear co-directional hydraulic fracturing can be divided into four stages: water injection boost, hydraulic fracture initiation, and the unstable and stable propagation of hydraulic fracture. The stable expansion stage lasts longer and produces more microcracks than the unstable expansion stage. Due to the existence of the borehole-sealing device, the three-dimensional hydraulic fracture first initiates and expands along the axial direction in the bare borehole section, then extends along the axial direction in the non-bare hole section and finally expands along the axial direction in the rock mass without the borehole. The network formed by hydraulic fracture in rock is not a pure plane, but rather a curved spatial surface. The curved spatial surface passes through both the centre of the borehole and the axial direction relative to the borehole. Due to the boundary effect, the curved spatial surface goes toward the plane in which the maximum principal stress occurs. The local ground stress field is changed due to the initiation and propagation of hydraulic fractures. The propagation direction of the fractures between the fracturing boreholes will be deflected. A fracture propagation pressure that is greater than the minimum principle stress and a tension field that is induced in the leading edge of the fracture end, will aid to fracture intersection; as a result, the possibility of connecting the boreholes will increase.


2020 ◽  
Vol 10 (3) ◽  
pp. 1153 ◽  
Author(s):  
Shirong Cao ◽  
Xiyuan Li ◽  
Zhe Zhou ◽  
Yingwei Wang ◽  
Hong Ding

Coalbed methane is not only a clean energy source, but also a major problem affecting the efficient production of coal mines. Hydraulic fracturing is an effective technology for enhancing the coal seam permeability to achieve the efficient extraction of methane. This study investigated the effect of a coal seam reservoir’s geological factors on the initiation pressure and fracture propagation. Through theoretical analysis, a multi-layered coal seam initiation pressure calculation model was established based on the broken failure criterion of maximum tensile stress theory. Laboratory experiments were carried out to investigate the effects of the coal seam stress and coal seam dip angle on the crack initiation pressure and fracture propagation. The results reveal that the multi-layered coal seam hydraulic fracturing initiation pressure did not change with the coal seam inclination when the burial depth was the same. When the dip angle was the same, the initiation pressure linearly increased with the reservoir depth. A three-dimensional model was established to simulate the actual hydraulic fracturing crack propagation in multi-layered coal seams. The results reveal that the hydraulic crack propagated along the direction of the maximum principal stress and opened in the direction of the minimum principal stress. As the burial depth of the reservoir increased, the width of the hydraulic crack also increased. This study can provide the theoretical foundation for the effective implementation of hydraulic fracturing in multi-layered coal seams.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3451 ◽  
Author(s):  
Zuxun Zhang ◽  
Hongtu Wang ◽  
Bozhi Deng ◽  
Minghui Li ◽  
Dongming Zhang

Hydraulic fracturing is an effective technology for enhancing the extraction of reservoir methane, as proved by field experience and laboratory experiments. However, unlike conventional reservoirs, coal seams had high stress sensitivity and high anisotropy. Therefore, the efficiency of hydraulic fracturing in coal seams needs to be investigated. In this study, hydraulic fracturing was performed at Nantong mine in the southeast Sichuan basin, China. The field investigation indicated that the hydraulic fracturing could significantly enhance the methane extraction rate of boreholes ten times higher than that of normal boreholes in one of the minable coal seams (named #5 coal seam). The performance of hydraulic fracturing in three districts revealed that compared with south flank, the fluid pressure was higher and the injection rate was lower in north flank. The methane extraction rate of south flank was inferior to that of north flank. It indicated hydraulic fracturing had less effect on #5 coal seam in south flank. Moreover, the injection of high-pressure water in coal seams could also drive methane away from boreholes. The methane extraction rate of the test boreholes demonstrated the existence of methane enrichment circles after hydraulic fracturing. It indicated that hydraulic fracturing did act on #5 coal seam in south flank. However, due to the high stress sensitivity of coal seams and the high geo-stress of south flank, the induced artificial fractures in #5 coal seam might close with the decline of the fluid pressure that led to a sharp decline of the methane extraction rate.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shenglong Liu ◽  
Bingxiang Huang ◽  
Weiyong Lu ◽  
Haoze Li ◽  
Ding Li ◽  
...  

Hydraulic fracturing can improve the permeability of composite thin coal seam. Recently, characterizing hydraulic fracture (HF) propagation inside the coal seam and evaluating the permeability enhancement with HF extension remain challenging and crucial. In this work, based on the geological characteristics of the coal seam in a coal mine of the southwest China, the RFPA2D-Flow software is employed to simulate the HF propagation and its permeability-increasing effect in the composite thin coal seam, and a couple of outcomes were obtained. (1) Continuous propagation of the hydraulic microcrack-band is the prominent characteristic of HF propagation. With the increment of the injection-water pressure, HF generation in the composite thin coal seam can be divided into three stages: stress accumulation, stable fracture propagation, and unstable fracture propagation. (2) The hydraulic microcrack-band propagates continuously driven by the fluid-injection pressure. The microcrack-band not only cracks the coal seam but also fractures the gangue sandwiched between the coal seams. (3) The permeability in the composite thin coal seam increases significantly with the propagation of hydraulic microcrack-band. The permeability increases by 1~2 magnitudes after hydraulic fracturing. This study provides references to the field applications of hydraulic fracturing in the composite thin coal seam, such as optimizing hydraulic fracturing parameters, improving gas drainage, and safe-efficient mining.


2020 ◽  
Author(s):  
Bangyou Jiang ◽  
Shitan Gu ◽  
Yunliang Tan ◽  
Guangchao Zhang ◽  
Jihua Zhang

Abstract Slicing fully mechanized caving mining now is a common high-efficiency mining method for ultra-thick coal seams. However, effective gas control has remained a difficulty in fully mechanized top-coal caving mining of low permeability ultra-thick coal seams. This study focused on mining of the #9-15 coal in Liuhuanggou Coal Mine, Xinjiang Province, China, and combined theoretical analyses and field test results for exploring comprehensive gas control methods for fully mechanized caving of low permeability ultra-thick coal seams. The No. (9-15)06 panel is a top slicing panel of the #9-15 coal with a mining height of 9 m, and the No. (4-5)02 goaf is located on the top of the panel. Through analysis, gas emissions in the No. (9-15)06 panel were mainly sourced from the coal wall, caving of top coal, goaf, and neighboring coal seams. A comprehensive gas control method based on source separation was proposed, which combined gas pre-drainage along the coal seam, high-position drilling on the top, pre-burial of pipes in the goaf, and pressure-balancing ventilation. Considering the poor gas pre-drainage effect for low permeability coal seams, the permeability of the coal seam was enhanced using hydraulic fracturing. According to coal seam and crustal stress distribution characteristics, the arrangement of the boreholes and backward segmented fracturing technology were designed. Field data show that coal underwent remarkable pre-fracturing under hydraulic fracturing. Mean gas pre-drainage from the boreholes was enhanced by nearly 4 times compared to the pre-hydraulic fracturing state. Finally, using the proposed comprehensive control method based on the gas sources, field tests were performed in the No. (9-15)06 panel. Field measurement data demonstrate that gas concentration in the return airflow fluctuated within a range of 0.05%~0.35%, i.e., gas concentration did not exceed the standard. The proposed gas control method can provide insightful reference for the other similar projects.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Bangyou Jiang ◽  
Shitan Gu ◽  
Wenshuai Li ◽  
Guangchao Zhang ◽  
Jihua Zhang

Slicing fully mechanized caving mining is a standard high-efficiency mining method for ultrathick coal seams. However, the effectiveness of gas control has accentuated the difficulty in fully mechanized top coal caving of low-permeability ultrathick coal seams. This study focused on mining the No. 9-15 coal in Liuhuanggou Coal Mine, Xinjiang Province, China. To this aim, the results of theoretical analyses and field tests were combined to explore a comprehensive gas control method for fully mechanized caving of low-permeability ultrathick coal seams. The No. (9-15)06 panel was a top-slicing panel of the No. 9-15 coal with a mining height of 9 m. Gas analysis results revealed that gas emissions in the No. (9-15)06 panel are mainly sourced from the coal wall, caving top coal, goaf, and neighboring coal seams. Based on gas source separation, a comprehensive gas control method was proposed. The proposed method was based on the combination of gas predrainage alongside the coal seam, high-position drilling on the top, preburial of pipes in the goaf, and pressure-balancing ventilation. The permeability and gas predrainage were enhanced by hydraulic fracturing in low-permeability coal seams. According to the characterizations of coal seam and crustal stress distribution, the arrangement of the boreholes and backward-segmented fracturing technology were designed. From the field results, the coal seam presented a remarkable prefracturing under hydraulic fracturing. Besides, the mean gas predrainage from the boreholes was enhanced by four times compared to the prehydraulic fracturing state. Finally, using the proposed comprehensive control method based on the gas sources, field tests were performed in the No. (9-15)06 panel. The measured results demonstrated that gas concentration in the return airflow is fluctuated within a range of 0.05% to 0.35%. The proposed gas control method can provide an insightful reference for other similar projects.


2019 ◽  
Vol 23 (Suppl. 3) ◽  
pp. 907-915
Author(s):  
Jianguo Zhang ◽  
Man Wang ◽  
Yingwei Wang

As coal mining gradually extends deeper, coal seams in China generally show high stress, high gas pressure and low permeability, bringing more difficulty to coal mining. Therefore, in order to strengthen gas extraction, it is necessary to carry out reservoir reconstruction after deep coal seams reached. In this paper, the distribution and evolution laws of fracture zone overlaying strata of J15 seam in Pingdingshan No. 10 coal mine after excavation were studied by combining similar simulation and numerical simulation, meanwhile, the gas transport law within fracture zone was numerically simulated. The results show that the fracture zone reaches a maximum of 350 mm in the vertical direction and is 75 mm away from W9,10 coal seams in vertical distance. Since W9,10 coal seams are in an area greatly affected by the bending zone of J15 coal seam under the influence of mining, the mining of J15 coal seam will exert a strong permeability enhancement effect on W9,10 coal seams. The J15 coal seam can act as a long-distance protective layer of W9,10 coal seams to eliminate the outburst danger of the long-distance coal seams in bending zone with coal and gas outburst danger, thereby achiev?ing safe, productive and efficient integrated mining of coal and gas resources. The gas flux of mining-induced fractures in the trapezoidal stage of mining-induced fracture field is far greater than that in the overlaying stratum matrix. The horizontal separation fractures and vertical broken fractures within the mining-induced fracture field act as passages for gas-flow. Compared with gas transport in the overlaying stratum matrix, the horizontal separation fractures and vertical broken fractures within the mining-induced fracture field play a role in guiding gas-flow. The research results can provide theoretical support for the arrangement of high-level gas extraction boreholes in roof fracture zones.


Sign in / Sign up

Export Citation Format

Share Document